LSD

From PsychonautWiki
Jump to navigation Jump to search
Summary sheet: LSD
LSD
LSD.svg
Chemical Nomenclature
Common names LSD, LSD-25, Lucy, L, Acid, Cid, Tabs, Blotter
Substitutive name d-Lysergic acid diethylamide
Systematic name (6aR,9R)-N,N-Diethyl-7-methyl-4,6,6a,7,8,9-hexahydroindolo-[4,3-fg]quinoline-9-carboxamide
Class Membership
Psychoactive class Psychedelic
Chemical class Lysergamide
Routes of Administration

WARNING: Always start with lower doses due to differences between individual body weight, tolerance, metabolism, and personal sensitivity. See responsible use section.





Sublingual
Dosage
Bioavailability 71% - 71%[1]
Threshold 15 µg
Light 25 - 75 µg
Common 75 - 150 µg
Strong 150 - 300 µg
Heavy 300 µg +
Duration
Total 8 - 12 hours
Onset 15 - 30 minutes
Come up 45 - 90 minutes
Peak 3 - 5 hours
Offset 3 - 5 hours
After effects 12 - 48 hours







DISCLAIMER: PW's dosage information is gathered from users and resources for educational purposes only. It is not a recommendation and should be verified with other sources for accuracy.

Interactions
Cannabis
Stimulants
Tramadol
Ritonavir]
Tricyclic antidepressants]
Lithium]

Lysergic acid diethylamide (also known as Lysergide, LSD-25, LSD, L, Lucy, and Acid) is a classical psychedelic substance of the lysergamide class.[2] Among psychedelics, LSD is notable for being the most potent (by weight), highly-researched, and culturally influential. It is thought to produce its psychedelic effects by binding to serotonin receptors in the brain, although the precise mechanism is not fully understood.

The psychoactive effects of LSD were first discovered in 1943 by Albert Hofmann, a Swiss chemist working for Sandoz Laboratories.[3] In the 1950s it was distributed by Sandoz under the name Delysid for use as an experimental drug in psychotherapy and scientific research.[4] LSD generated widespread interest from clinicians, researchers, and intellectuals and was notably subject to a secret investigation by the U.S. Central Intelligence Agency (CIA) for potential applications in behavioural modification ("mind control").[5] Recreational LSD use became a central part of the 1960s youth counterculture movement which eventually led to its prohibition in 1971.[6][7]

Following a 40 year hiatus, research into the therapeutic applications of LSD has experienced a revival.[citation needed] It is currently being investigated for the treatment of a number of ailments including alcoholism, addiction, cluster headache, and anxiety associated with terminal illness.[4] LSD remains in widespread illicit use for recreational and spiritual purposes. The lifetime prevalence of LSD use among adults is in the range of 6-8%.[4]

Subjective effects include open and closed-eye visuals, time distortion, enhanced introspection, conceptual thinking, euphoria, and ego loss. LSD is commonly reported to be able to evoke mystical-type experiences that can facilitate self-reflection and personal growth.[8] It is considered by some to be the first modern entheogen, a category which is otherwise limited to traditional plant preparations or extracts.[9]

Unlike other highly prohibited substances, LSD has not been proven to be physiologically toxic or addictive.[10][2] However, adverse psychological reactions such as severe anxiety, paranoia and psychosis are always possible, particularly for those predisposed to psychiatric disorders.[11] As a result, it is highly advised to use harm reduction practices if using this substance.

History and culture

LSD was first synthesized on November 16, 1938, by the Swiss chemist Albert Hofmann at the Sandoz Laboratories in Basel, Switzerland. It was part of a large research program searching for medically useful derivatives of ergot, a fungus that grows on rye and other grains. The abbreviated form of LSD comes from its early research code name LSD-25 which is an abbreviation for the German spelling "Lysergsäure-diethylamid" followed by a sequential number.[12] However, its psychoactive properties were not discovered until five years later when Hofmann claimed to have accidentally ingested an unknown quantity of the chemical before proceeding to ride his bike home.[13]

The first intentional ingestion of LSD occurred on April 19, 1943.[12] Hofmann ingested 250 micrograms (µg) of LSD, believing it would be a threshold dose based on the doses of other ergot alkaloids. Hofmann found the effects to be much stronger than he anticipated and was impressed by its profound mind-altering effects. In 1947, Sandoz introduced LSD to the medical community under the name Delysid as an experimental tool to induce temporary psychotic-like states in normals (“model-psychosis”) and later to enhance psychotherapeutic treatments (“psycholytic” or “psychedelic” therapy).[12] LSD had a major impact in the areas of scientific research and psychiatry. Within 15 years of its release, research on LSD and other hallucinogens generated over 1,000 scientific papers and was prescribed to over 40,000 patients.[14]

In the 1950s, the U.S. Central Intelligence Agency began a research program code named MK-ULTRA that would conduct clandestine research investigating LSD for applications in mind control and chemical warfare. Experiments included administering LSD to CIA employees, military personnel, doctors, prostitutes, mentally ill patients, and members of the general public without their knowledge or consent, which resulted in at least one death.[5]

In 1963, the Sandoz patents for LSD expired. Several prominent intellectuals, including Aldous Huxley, Timothy Leary, and Al Hubbard began to advocate for the consumption of LSD. LSD became a central part of the youth-driven counterculture of the 1960s. Along with other hallucinogens, LSD was advocated by new proponents of consciousness expansion such as Leary, Huxley, Alan Watts and Arthur Koestler[6] who, according to L. R. Veysey, profoundly influenced the thinking of the new generation of youth.[15]

On October 24, 1968, possession of LSD was made illegal in the United States.[16] The last FDA approved study of LSD in patients ended in 1980, while a study in healthy volunteers was made in the late 1980s. Legally approved and regulated psychiatric use of LSD continued in Switzerland until 1993.[17]

Chemistry

Binding affinities of LSD for various receptors. The lower the dissociation constant (Ki), the more strongly LSD binds to that receptor (i.e. with higher affinity). The horizontal line represents an approximate value for human plasma concentrations of LSD, and hence, receptor affinities that are above the line are unlikely to be involved in LSD's effect. Data averaged from data from the Ki Database.

LSD, or d-lysergic acid diethylamide, is a semisynthetic substance of the lysergamide family. LSD's chemical structure consists of a bicyclic hexahydroindole ring fused to a bicyclic quinoline group (lysergic acid). At carbon 8 of the quinoline an N,N-diethyl carboxamide is bound. LSD is additionally substituted at carbon 6 with a methyl group.

LSD is a chiral compound with two stereocenters at R5 and R8. LSD, also called (+)-D-LSD, has an absolute configuration of (5R, 8R). The three other stereoisomers of LSD do not have psychoactive properties.[18]

LSD occurs as a colorless, odorless crystal in its pure form.[citation needed] LSD is sensitive to oxygen, ultraviolet light, and chlorine (especially in solution).[18] Its potency may last for years if it is stored away from light and moisture at cold temperatures around 0°C or below, but will slowly degrade at normal room temperature (25°C).[citation needed]

Pharmacology

Further information: Serotonergic psychedelic
This image shows how, with eyes-closed, much more of the brain contributes to the visual experience under LSD (right image) than under placebo (left image). The magnitude of this effect correlates with participants’ reports of complex, dreamlike visions.[19]

LSD is a partial agonist for the 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C and 5-HT6 receptors.[20] LSD binds to most serotonin receptor subtypes except for 5-HT3 and 5-HT4. 5-HT5B receptors, which have not been found in humans, also have a high affinity for LSD.[21] The psychedelic effects of LSD are thought to be mediated by agonist action 5-HT2A receptors.[22]

LSD also shows efficacy at all dopamine and all norepinephrine receptors. Most serotonergic psychedelics are not significantly dopaminergic, so LSD is unique in this respect. LSD's agonism of D2 receptors has been shown to contribute to its psychoactive effects.[23][24]

Subjective effects

The subjective effects of LSD can be broken down into several components which progressively intensify proportional to dosage in a nonlinear manner.

In comparison to other psychedelics such as psilocybin mushrooms, LSA and ayahuasca, LSD is significantly more stimulating and fast-paced in both its physical and cognitive effects and produces a wide variety of effects that can potentially be attributed to its binding activity at a range of CNS receptors other than serotonin, such as those of dopamine and norepinephrine.

Disclaimer: The effects listed below are cited from the Subjective Effect Index (SEI), which relies on assorted anecdotal reports and the personal experiences of PsychonautWiki contributors. As a result, they should be taken with a healthy amount of skepticism. It is worth noting that these effects will not necessarily occur in a consistent or reliable manner, although higher doses (common+) are more likely to induce the full spectrum of reported effects. Likewise, adverse effects become much more likely on higher doses and may include serious injury or death.

Physical effects
Child.svg

Visual effects
Eye.svg

Cognitive effects
User.svg

Multi-sensory effects
Gears.svg

Combination effects

  • Alcohol - Alcohol's central depressant effects can be used to reduce some of the anxiety and tension produced by LSD. However, alcohol can cause dehydration, nausea and physical fatigue which can negatively influence the trip. Users are advised to pace themselves and drink a portion of their usual amount if making the decision to drink on LSD.
  • Benzodiazepines - Benzodiazepines are highly effective at reducing the intensity of LSD's effects through the general suppression of brain activity.
  • Dissociatives - LSD enhances the cognitive, visual and general hallucinatory effects of dissociatives. Dissociative-induced holes, spaces, and voids and internal hallucinations become more vivid and intense on LSD. These effects correspond with an increased risk of confusion, delusions, and psychosis.
  • MDMA - LSD and MDMA are highly synergistic and mutually enhance each other's physical, cognitive, and visual effects. The synergy between these substances is unpredictable, and it is advised to start with markedly lower doses than one would take for each individually. There is some evidence that suggests LSD increases the neurotoxicity of MDMA.[27][28][29]

Experience reports

Anecdotal reports which describe the effects of this compound within our experience index include:

Additional experience reports can be found here:

Forms and mimics

LSD is typically distributed in various forms for oral or sublingual administration. It is one of the few psychedelic substances potent enough to fit onto small squares of "blotter paper",[30] and has a history of being counterfeited by similarly potent psychedelics that do not have its favorable safety profile.

LSD can be found in a number of forms, with blotter paper being the most common:

  • Blotters are typically small squares pulled off sheets of perforated blotting paper that are dipped into an LSD/alcohol solution which are then either swallowed or chewed, or held sublingually. There should not be a bitter metallic taste which numbs the mouth when chewing the blotters as this likely indicates the presence of a 25x-NBOMe compound.
  • Liquid solutions are often found in vials with a pipette. It is often dropped directly into the mouth or tongue. It may also be dropped onto individual sugar cubes or candy before consumption.[31]
  • Tablets & Microdots are very small tablets which can be chewed or swallowed.
  • Powder can, in theory, be administered orally, sublingually, or via insufflation or injection. However, LSD is rarely encountered or taken in this way in practice due to its incredible potency. It is almost always diluted into a liquid solution or 'laid' onto blotter paper to allow for more accurate and consistent dosing.
  • Gel tabs can be taken orally and are small pieces of gelatin which contain LSD. These are less common now than in the past, but are still occasionally present in some areas of the world.

Mimics ("Fake acid")

LSD is unusually potent among psychedelic substances, active at just 15-30 micrograms (µg).[30] It has a long history of being counterfeited by a few other psychedelics potent enough to be laid onto blotter paper (colloquially known as "fake acid" or "bunk acid"). This can be attributed to major differences in cost and ease of synthesis as well as the general inability of inexperienced users to tell the difference.

While pure LSD is almost completely tasteless,[citation needed] the blotter paper it is absorbed onto can impart a mildly bitter taste if it contains any ink. Mimics are usually described as having an obvious "metallic", "numbing", "chemical-like" or "extremely bitter or sour" taste. It is commonly advised to immediately spit out any blotters of acid that are found to have a strong, persisting taste. However, the taste test can only partially ensure user safety. Users should always test their LSD using a reagent test kit. Testing kits are considered important because mimics (such as 25x-NBOMe and DOx) have significantly worse safety profiles than LSD which includes the risk of death.[citation needed]

25I-NBOMe, which has been attributed to several deaths,[32][33][34][35] may commonly be mistaken for LSD by sellers and users.[35]

Research

Alcoholism

Some studies in the 1960s that investigated LSD as a treatment for alcoholism found reduced levels of alcohol misuse in almost 60% of those treated, an effect which lasted six months but disappeared after a year.[26][36][26][37][38] A 2012 meta-analysis of six randomized controlled trials found evidence that a single dose of LSD in conjunction with various alcoholism treatment programs was associated with a decrease in alcohol abuse, lasting for several months.[26]

Trauma-related pain

LSD was studied in the 1960s by Eric Kast as an analgesic for acute and chronic pain caused by cancer or other major trauma.[39] Even at low (i.e. sub-psychedelic) dosages, it was found to be at least as effective as traditional opiates, while being much longer lasting in pain reduction (lasting as long as a week after peak effects had subsided). Kast attributed this effect to a decrease in anxiety; that is to say that patients were not experiencing less pain, but rather were less distressed by the pain they experienced. This purported effect is being tested using a similar psychedelic substance, in an ongoing (as of 2006) study of the effects of psilocin on anxiety in terminal cancer patients.[citation needed]

Cluster headaches

LSD has been used as a treatment for cluster headaches, an uncommon but extremely painful disorder. Although the phenomenon has not been formally investigated, case reports indicate that LSD and psilocin can reduce cluster pain and also interrupt the cluster-headache cycle, preventing future headaches from occurring. Currently existing treatments include various tryptamines among other chemicals, so LSD's efficacy in this regard may not be surprising.

A dose-response study testing the effectiveness of both LSD and psilocin was planned at McLean Hospital, although the current status of this project is unclear. A 2006 study by McLean researchers interviewed 53 cluster headache sufferers who treated themselves with either LSD or psilocin, finding that a majority of users of either drug reported beneficial effects.[40] Unlike the use of LSD or MDMA in psychotherapy, this research involves non-psychological effects and often sub-psychedelic dosages.[41][40]

End-of-life anxiety

From 2008 to 2011 there was ongoing research in Switzerland into using LSD to alleviate anxiety for terminally ill cancer patients coping with their impending deaths. Preliminary results of the study are promising, and no negative effects have been reported.[42][43]

Neuroplasticity

A 2018 study demonstrated neuroplasticity induced by LSD and other psychedelics through TrkB, mTOR, and 5-HT2A signaling.[44]

Toxicity and harm potential

Radar plot showing relative physical harm, social harm, and dependence of LSD[45]

LSD is physiologically well-tolerated and has an extremely low toxicity relative to dose. There is no evidence for long-lasting effects on the brain or other organs and there are no documented deaths attributed to the direct effects of LSD toxicity.[46]

However, while LSD may be incapable of causing direct bodily harm or death, its use can still have serious negative consequences. LSD is capable of impairing the judgment and attention of users which may cause dangerous, erratic behaviors. In extreme cases, users may believe that they are invincible or in a dream and may do things such as jumping off of a building or walking into a busy road.[2] Additionally, intense negative experiences or "bad trips" can be psychologically traumatic if not properly managed. This is particularly a concern in non-supervised settings or when excessively high doses are used.

LSD may trigger symptoms in those who have or are predisposed to mental illness such as bipolar disorder or schizophrenia.[46] Those with a personal or family history of mental illness should not use LSD without the advice of a qualified medical practitioner.

Additionally, it should be noted that evidence that LSD can be an effective treatment with manageable risks only applies to the controlled procedures used in clinical studies, where professional psychotherapists help guide the patient’s experience. LSD alone is not considered the treatment because the idea is that LSD should be combined with professional psychotherapy. Without the appropriate safeguards, attempts at self-treating with LSD may actually worsen conditions like anxiety and other mental health issues.[47]

It is strongly recommended to use harm reduction practices if using this substance.

Overdose

LSD has no known toxic dose. However, higher doses increase the risk of adverse psychological reactions. These reactions include anxiety, delusions, panic attacks and, more rarely, seizures. Medical attention is usually not needed except in the case of severe psychotic episodes or the ingestion of so-called fake acid such as 25i-NBOMe or DOB. Administration of benzodiazepines or antipsychotics can help to relieve the acute negative cognitive effects of LSD.

Dependence and abuse potential

Like other serotonergic psychedelics, LSD is considered to be non-addictive with a low abuse potential.[46] There are no literature reports of successful attempts to train animals to self-administer LSD — an animal model predictive of abuse liability — indicating that it does not have the necessary pharmacology to either initiate or maintain dependence.[46] Likewise, there is no human clinical evidence that LSD causes addiction. Finally, there is virtually no withdrawal syndrome when chronic use of LSD is stopped.[citation needed]

Tolerance to the effects of LSD forms almost immediately after ingestion. After that, it takes about 7 days for the tolerance to return to baseline (in the absence of further consumption). LSD produces cross-tolerance with all psychedelics, meaning that after the use of LSD all psychedelics will have a reduced effect.

Some anecdotal reports suggest that extremely high doses of LSD can produce a tolerance which can last subsequently longer anywhere from weeks to months. High doses of LSD, along with high tolerances, can produce unusual variations in intensity, duration, and effects.

Dangerous interactions

Although many psychoactive substances are reasonably safe to use on their own, they can quickly become dangerous or even life-threatening when combined with other substances. The list below includes some known dangerous combinations (although it cannot be guaranteed to include all of them). Independent research should always be conducted to ensure that a combination of two or more substances is safe to consume. Some interactions listed have been sourced from TripSit.

  • Lithium:[48] Lithium is commonly prescribed in the treatment of bipolar disorder. There is a large body of anecdotal evidence that suggests taking it with LSD significantly increases the risk of psychosis and seizures.[49][50][51] Therefore, this combination should be avoided.
  • Tricyclic antidepressants:[48] Tricyclic antidepressants increase physical, hallucinatory and psychological responses to LSD.[52] Anecdotal evidence suggests that TCAs increase the risk of bad trips and psychosis when combined with LSD. Since the symptoms are similar to those induced by lithium and LSD, seizures cannot be excluded. Therefore, this combination should be avoided.
  • Tramadol:[53] Tramadol is well known to lower the seizure threshold[54] and LSD also has the potential to induce seizures in susceptible individuals.[55] For this reason combining LSD with tramadol should be avoided.
  • Ritonavir:[48] Severe vascular constriction has happened when taking ergolines in combination with ritonavir. It is not known if this extends to LSD, therefore utmost caution is advised.
  • Cannabis:[53] Cannabis has an unexpectedly strong and somewhat unpredictable synergy with LSD. It strongly intensifies the sensory and cognitive effects of LSD. Caution is advised when using this combination as it can significantly increase the chances of negative psychological effects like anxiety, paranoia, confusion, panic attacks, and psychosis. Users are advised to start off with only a fraction of their usual cannabis dose and take long breaks between hits to avoid accidental over intake.
  • Stimulants:[53]: Stimulants like amphetamines and cocaine elevate anxiety levels and increase the risk of paranoia and thought loops which can lead to negative experiences. Caution is advised.

Legal status

Internationally, the UN 1971 Convention on Psychotropic Substances requires its parties to prohibit LSD. Hence, it is illegal in all parties to the convention, which includes the United States, Australia, New Zealand, and most of Europe. Medical and scientific research with LSD in humans is permitted under the 1971 UN Convention, although has been reported to be difficult to actually carry out in practice.[7]

  • Austria: LSD is illegal to possess, produce and sell under the SMG (Suchtmittelgesetz Österreich).[citation needed]
  • Canada: LSD is a Schedule III controlled substance in Canada.[56]
  • Denmark: LSD is a Category A controlled substance in Denmark.[57]
  • Germany: LSD is controlled under Anlage I BtMG (Narcotics Act, Schedule I), former: Opiumgesetz (Opium Act) as of February 25, 1967.[58][59] It is illegal to manufacture, possess, import, export, buy, sell, procure or dispense it without a license.[60]
  • Latvia: LSD is a Schedule I controlled substance in Latvia.[61]
  • Portugal: LSD is illegal to produce, sell or trade in Portugal. However since 2001, individuals found in possession of small quantities (up to 500 µg) are considered sick individuals instead of criminals. The substance is confiscated and the suspects may be forced to attend a dissuasion session at the nearest CDT (Commission for the Dissuasion of Drug Addiction) or pay a fine, in most cases.[62]
  • United Kingdom: LSD is a Class A controlled substance in the United Kingdom.[63]
  • United States: LSD is a Schedule I controlled substance under the Controlled Substances Act of 1970. This means it is illegal to manufacture, buy, possess, process, or distribute without a license from the Drug Enforcement Administration (DEA).[64]

See also

External links

Literature

  • Nichols, D. E. (2016). Psychedelics. Pharmacological Reviews, 68(2), 264-355. http://dx.doi.org/10.1124/pr.115.011478
  • Passie, T., Halpern, J. H., Stichtenoth, D. O., Emrich, H. M., & Hintzen, A. (2008). The Pharmacology of Lysergic Acid Diethylamide: A Review, 14, 295–314. https://doi.org/10.1111/j.1755-5949.2008.00059.x
  • Carhart-Harris, R. L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W., Murphy, K., … Nutt, D. J. (2016). Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1518377113
  • Schmid, Y., Enzler, F., Gasser, P., Grouzmann, E., Preller, K.H., Vollenweider, F.X., Brenneisen, R., Mueller, F., Borgwardt, S.J., & Liechti, M.E. (2015). Acute Effects of Lysergic Acid Diethylamide in Healthy Subjects. Biological psychiatry, 78 8, 544-53. https://doi.org/10.1016/j.biopsych.2014.11.015
  • Carhart-Harris, R.L., Kaelen, M., Bolstridge, M., Williams, T.M., Williams, L.T., Underwood, R., Feilding, A., & Nutt, D.J. (2016). The paradoxical psychological effects of lysergic acid diethylamide (LSD). Psychological medicine, 46 7, 1379-90. https://doi.org/10.1017/S0033291715002901

Further reading

Books

  • Hoffman, Albert. LSD — My Problem Child. McGraw-Hill, 1980.
  • Lee, Martin A., and Bruce Shlain. Acid Dreams: The Complete Social History of LSD: The CIA, the Sixties, and Beyond. Grove Press, 1992.

Articles

References

  1. Dolder, P. C., Schmid, Y., Haschke, M., Rentsch, K. M., & Liechti, M. E. (2016). Pharmacokinetics and concentration-effect relationship of oral LSD in humans. International Journal of Neuropsychopharmacology, 19(1), 1–7. https://doi.org/10.1093/ijnp/pyv072
  2. 2.0 2.1 2.2 Nichols, David E. (2016). Barker, Eric L., ed. "Psychedelics". Pharmacological Reviews. 68 (2): 264–355. doi:10.1124/pr.115.011478. eISSN 1521-0081. ISSN 0031-6997. 
  3. Passie, T.; Halpern, J. H.; Stichtenoth, D. O.; Emrich, H. M.; Hintzen, A. "The Pharmacology of Lysergic Acid Diethylamide: A Review" (PDF). CNS Neuroscience & Therapeutics. 14: 295–314. doi:10.1111/j.1755-5949.2008.00059.x. eISSN 1755-5949. ISSN 1755-5930. Archived from the original (PDF) on May 1, 2013. Retrieved January 1, 2020. 
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Schmid, Y.; Enzler, F.; Gasser, P.; Grouzmann, E.; Preller, K. H.; Vollenweider, F. X.; Brenneisen, R.; Müller, F.; Borgwardt, S.; Liechti, M. E. (2015). "Acute Effects of Lysergic Acid Diethylamide in Healthy Subjects". Biological Psychiatry. 78 (8): 544–553. doi:10.1016/j.biopsych.2014.11.015. eISSN 1873-2402. ISSN 0006-3223. 
  5. 5.0 5.1 "Joint Hearing before the Select Committee On Intelligence and the Subcommitte On Health And Scientific Research of the Committee On Human Resources: Ninety-fifth congress: First Session" (PDF). U.S. Government Printing Office. August 3, 1977. Retrieved January 3, 2020. 
  6. 6.0 6.1 David Nichols (December 22, 2005). "LSD: cultural revolution and medical advances". Chemistry World. Royal Society of Chemistry. Retrieved September 27, 2007. 
  7. 7.0 7.1 "Convention On Psychotropic Substances, 1971" (PDF). United Nations Office on Drugs and Crime. Retrieved January 3, 2020. 
  8. Lyvers, Michael; Meester, Molly (2012). "Illicit Use of LSD or Psilocybin, but not MDMA or Nonpsychedelic Drugs, is Associated with Mystical Experiences in a Dose-Dependent Manner". Journal of Psychoactive Drugs. 44 (5): 410–417. doi:10.1080/02791072.2012.736842. eISSN 2159-9777. ISSN 0279-1072. 
  9. Grof, Stanislav (1993). Realms of the Human Unconscious: Observations from LSD Research. London: Souvenir Press. pp. 13–14. ISBN 0-285-64882-9. Archived from the original on January 28, 2011. Retrieved January 3, 2020. 
  10. Lüscher, Christian; Ungless, Mark A. (2006). "The Mechanistic Classification of Addictive Drugs". PLOS Medicine. 3 (11). doi:10.1371/journal.pmed.0030437. eISSN 1549-1676. ISSN 1549-1277. PMID 17105338. 
  11. Strassmann, Rick (1984). "Adverse reactions to psychedelic drugs. A review of the literature". Journal of Nervous and Mental Disease. 172 (10): 577–595. doi:10.1097/00005053-198410000-00001. ISSN 0022-3018. OCLC 1754691. PMID 6384428. 
  12. 12.0 12.1 12.2 Hofmann, Albert (1980). LSD - My Problem Child. Translated by Ott, Jonathan. New York: McGraw-Hill. ISBN 978-0-07029-325-0. OCLC 6251390. 
  13. Nichols, David (May 24, 2003). "Hypothesis on Albert Hofmann's Famous 1943 "Bicycle Day"". at Mindstates IV: Berkeley, CA: Transcription & Editing by Erowid. Retrieved January 3, 2020. 
  14. Zentner, Joseph L. (1976). "The Recreational Use of LSD-25 and Drug Prohibition". Journal of Psychedelic Drugs. 8 (4): 299–305. doi:10.1080/02791072.1976.10471853. eISSN 2159-9777. ISSN 0279-1072. 
  15. Veysey, Laurence R. (1978). The Communal Experience: Anarchist and Mystical Communities in Twentieth-Century America. Chicago IL: University of Chicago Press. p. 437. ISBN 0-226-85458-2. 
  16. "Public Law 90-639" (PDF). Erowid. Retrieved January 3, 2020. 
  17. Gasser, Peter (1995). "Psycholytic Therapy with MDMA and LSD in Switzerland". Newsletter of the Multidisciplinary Association for Psychedelic Studies. MAPS. 5 (3): 3–7. Retrieved January 3, 2020. 
  18. 18.0 18.1 Shulgin, Alexander; Shulgin, Ann (1997). "#26. LSD-25". TiHKAL: The Continuation. United States: Transform Press. ISBN 0-9630096-9-9. OCLC 38503252. 
  19. Carhart-Harris, R. L.; Muthukumaraswamy, S.; Roseman, L.; Kaelen, M.; Droog, W.; Murphy, K.; Tagliazucchi, E.; Schenberg, E. E.; Nest, T.; Orban, C.; Leech, R.; Williams, L. T.; Williams, T. M.; Bolstridge, M.; Sessa, B.; McGonigle, J.; Sereno, M. I.; Nichols, D.; Hellyer, P. J.; Hobden, P.; Evans, J.; Singh, K. D.; Wise, R. G.; Curran, H. V.; Feilding, A.; Nutt, D. J. (2016). "Neural correlates of the LSD experience revealed by multimodal neuroimaging". Proceedings of the National Academy of Sciences. 113 (17): 4853–4858. doi:10.1073/pnas.1518377113. eISSN 1091-6490. ISSN 0027-8424. OCLC 43473694. 
  20. Aghajanian, G. K.; Bing, O. H. (1964). "Persistence Of Lysergic Acid Siethylamide In The Plasma Of Human Subjects". Clinical Pharmacology & Therapeutics. 5 (5): 611–614. doi:10.1002/cpt196455611. ISSN 1532-6535. PMID 14209776. 
  21. Nelson, D. L. (2004). "5-HT5 receptors". Current Drug Targets-CNS & Neurological Disorders. 3 (1): 53–58. doi:10.2174/1568007043482606. ISSN 1568-007X. PMID 14965244. 
  22. Moreno, J. L.; Holloway, T.; Albizu, L.; Sealfon, S. C.; González-Maeso, J. (2011). "Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists". Neuroscience Letters. 493 (3): 76–79. doi:10.1016/j.neulet.2011.01.046. ISSN 0304-3940. OCLC 1874501. PMID 21276828. 
  23. Marona-Lewicka, Danuta; Thisted, Ronald A.; Nichols, David E. (2005). "Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis". Psychopharmacology. 180 (3): 427–435. doi:10.1007/s00213-005-2183-9. eISSN 1432-2072. ISSN 0033-3158. PMID 15723230. 
  24. Hanna, Jon; Manning, Tania (2012). "The End of a Chemistry Era...: Dave Nichols Closes Shop". Erowid Extracts. Erowid. 23: 2–7. Retrieved January 3, 2020. 
  25. Friedman, Steven A.; Hirsch, Stuart E. (1971). "Extreme Hyperthermia After LSD Ingestion". JAMA: The Journal of the American Medical Association. 217 (11): 1549–1550. doi:10.1001/jama.1971.03190110067020. eISSN 1538-3598. ISSN 0098-7484. OCLC 1124917. 
  26. 26.0 26.1 26.2 26.3 Krebs, T. S.; Johansen, P. Ø. (2012). "Lysergic acid diethylamide (LSD) for alcoholism: meta-analysis of randomized controlled trials". Journal of Psychopharmacology. 26 (7): 994–1002. doi:10.1177/0269881112439253. eISSN 1461-7285. ISSN 0269-8811. OCLC 19962867. PMID 22406913. 
  27. Armstrong, B. D.; Paik, E.; Chhith, S.; Lelievre, V.; Waschek, J. A.; Howard, S. G. (2004). "Potentiation of (DL)‐3,4‐methylenedioxymethamphetamine (MDMA)‐induced toxicity by the serotonin 2A receptior partial agonist d‐lysergic acid diethylamide (LSD), and the protection of same by the serotonin 2A/2C receptor antagonist MDL 11,939". Neuroscience Research Communications. 35 (2): 83–95. doi:10.1002/nrc.20023. eISSN 1520-6769. 
  28. Gudelsky, Gary A.; Yamamoto, Bryan; Nash, J. Frank (1994). "Potentiation of 3,4-methylenedioxymethamphetamine-induced dopamine release and serotonin neurotoxicity by 5-HT2 receptor agonists". European Journal of Pharmacology. 264 (3): 325–330. doi:10.1016/0014-2999(94)90669-6. eISSN 1879-0712. ISSN 0014-2999. OCLC 01568459. 
  29. Capela, J. P.; Fernandes, E.; Remião, F.; Bastos, M. L.; Meisel, A.; Carvalho, F. (2007). "Ecstasy induces apoptosis via 5-HT2A-receptor stimulation in cortical neurons". NeuroToxicology. 28 (4): 868–875. doi:10.1016/j.neuro.2007.04.005. ISSN 0161-813X. PMID 17572501. 
  30. 30.0 30.1 Greiner, Theodore; Burch, Neil R.; Edelberg, Robert (1958). "Psychopathology and Psychophysiology of Minimal LSD-25 Dosage: A Preliminary Dosage-Response Spectrum". A.M.A. Archives of Neurology and Psychiatry. 79 (2): 208–210. doi:10.1001/archneurpsyc.1958.02340020088016. ISSN 0096-6886. OCLC 994501808. PMID 13497365. 
  31. Jim Newton (July 27, 1992). "Long LSD Prison Terms--It's All in the Packaging : Drugs: Law can mean decades in prison for minuscule amounts. DEA official says no change is needed". Los Angeles Times. Retrieved January 3, 2020. 
  32. Erowid. "25I-NBOMe (2C-I-NBOMe) Fatalities / Deaths". Erowid. Retrieved February 28, 2016. 
  33. Hastings, Deborah (May 6, 2013). "New drug N-bomb hits the street, terrifying parents, troubling cops". New York Daily News. Retrieved May 7, 2013. 
  34. Feehan, Conor (January 21, 2016). "Powerful N-Bomb drug - responsible for spate of deaths internationally - responsible for hospitalisation of six in Cork". Irish Independent. Retrieved January 22, 2016. 
  35. 35.0 35.1 Iversen, Les (May 29, 2013). "Temporary Class Drug Order Report on 5-6APB and NBOMe compounds" (PDF). Advisory Council on the Misuse of Drugs. Gov.Uk. Retrieved June 16, 2013. 
  36. Maclean, J. R.; Macdonald, D. C.; Odgen, F.; Wilby, E. (1967). "LSD-25 and Mescaline as Therapeutic Adjuvants: Experience from a Seven Year Study". In Abramson, H. A. The Use of LSD in Psychotherapy and Alcoholism (PDF). New York: Bobbs-Merrill. pp. 74–80. OCLC 302168. 
  37. Hoffer, A. (1967). "A Program for the Treatment of Alcoholism: LSD, Malvaria and Nicotinic Acid". In Abramson, H. A. The Use of LSD in Psychotherapy and Alcoholism (PDF). New York: Bobbs-Merrill. pp. 353–402. OCLC 302168. 
  38. Mangini, Mariavittoria (1998). "Treatment of Alcoholism Using Psychedelic Drugs: A Review of the Program of Research". Journal of Psychoactive Drugs. 30 (4): 381–418. doi:10.1080/02791072.1998.10399714. eISSN 2159-9777. ISSN 0279-1072. 
  39. Kast, Eric (1967). "Attenuation of anticipation: A therapeutic use of lysergic acid diethylamide". Psychiatric Quarterly. 41 (4): 646–657. doi:10.1007/BF01575629. eISSN 1573-6709. ISSN 0033-2720. OCLC 01715671. 
  40. 40.0 40.1 Sewell, R. A.; Halpern, J. H.; Pope, H. G. (2006). "Response of cluster headache to psilocybin and LSD". Neurology. 66 (12): 1920–1922. doi:10.1212/01.wnl.0000219761.05466.43. eISSN 1526-632X. ISSN 0028-3878. OCLC 960771045. 
  41. "LSD and Psilocybin Research: Research into psilocybin and LSD as potential treatments for people with cluster headaches". Multidisciplinary Association for Psychedelic Studies. Archived from the original on January 29, 2007. Retrieved January 6, 2020. 
  42. dvp (July 28, 2009). "Psychiater Gasser bricht sein Schweigen" (in German). Basler Zeitung. Archived from the original on September 2, 2014. Retrieved January 6, 2020. 
  43. David Jay Brown (May 26, 2011). "Landmark Clinical LSD Study Nears Completion". Patch. Retrieved January 6, 2020. 
  44. Ly, Calvin; Greb, Alexandra C.; Cameron, Lindsay P.; Wong, Jonathan M.; Barragan, Eden V.; Wilson, Paige C.; Burbach, Kyle F.; Soltanzadeh Zarandi, Sina; Sood, Alexander; Paddy, Michael R.; Duim, Whitney C.; Dennis, Megan Y.; McAllister, A. Kimberley; Ori-McKenney, Kassandra M.; Gray, John A.; Olson, David E. (2018). "Psychedelics Promote Structural and Functional Neural Plasticity". Cell Reports. 23 (11): 3170–3182. doi:10.1016/j.celrep.2018.05.022. ISSN 2211-1247. 
  45. Nutt, D.; King, L. A.; Saulsbury, W.; Blakemore, C. (2007). "Development of a rational scale to assess the harm of drugs of potential misuse". Health Policy. 369 (9566): 1047–1053. doi:10.1016/S0140-6736(07)60464-4. eISSN 1872-6054. ISSN 0168-8510. OCLC 10960514. PMID 17382831. 
  46. 46.0 46.1 46.2 46.3 Nichols, David E. (2004). "Hallucinogens". Pharmacology & Therapeutics. 101 (2): 131–181. doi:10.1016/j.pharmthera.2003.11.002. eISSN 1879-016X. ISSN 0163-7258. OCLC 04981366. 
  47. "Does LSD have any medical uses?". LSD. Drug Science. Retrieved January 7, 2020. 
  48. 48.0 48.1 48.2 "LSD: Interactions". Erowid. November 18, 2003. Retrieved January 7, 2020. 
  49. "wanderlei" (October 3, 2010). "A Nice Little Trip to the Hospital: Lithium & LSD". Erowid Experience Vaults. Erowid. ExpID: 83935. Retrieved January 7, 2020. 
  50. "MissDja1a" (December 16, 2008). "Having a Seizure and Passing Out: Lithium & LSD". Erowid Experience Vaults. Erowid. ExpID: 75153. Retrieved January 7, 2020. 
  51. "throwaway_naut" (2014). "Please Read: a cautionary tale concerning LSD". r/Psychonaut. Reddit. Retrieved January 7, 2020. 
  52. Bonson, Katherine R.; Murphy, Dennis L. (1995). "Alterations in responses to LSD in humans associated with chronic administration of monoamine oxidase inhibitors or lithium". Behavioural Brain Research. 73 (1-2): 229–233. doi:10.1016/0166-4328(96)00102-7. eISSN 1872-7549. ISSN 0166-4328. OCLC 06183451. PMID 8788508. 
  53. 53.0 53.1 53.2 "Tripsit Factsheets - LSD". Tripsit. Retrieved January 7, 2020. 
  54. Talaie, H.; Panahandeh, R.; Fayaznouri, M. R.; Asadi, Z.; Abdollahi, M. (2009). "Dose-independent occurrence of seizure with tramadol". Journal of Medical Toxicology. 5 (2): 63–67. doi:10.1007/BF03161089. eISSN 1937-6995. ISSN 1556-9039. OCLC 163567183. PMC 3550327Freely accessible. PMID 19415589. 
  55. Fisher, D. D.; Ungerleider, J. T. (1967). "Grand mal seizures following ingestion of LSD". California Medicine. 106 (3): 210–211. ISSN 0008-1264. PMC 1502729Freely accessible. PMID 4962683. 
  56. "Schedule III". Controlled Drugs and Substances Act (S.C. 1996, c. 19). Government of Canada. Retrieved January 1, 2020. 
  57. "Samlet liste over euforiserende stoffer opført på bilag 1 til bekendtgørelsen om euforiserende stoffer nr. 557 af 31. maj 2011 og stoffer reguleret herefter via ændringsbekendtgørelser" (in Danish). Lægemiddelstyrelsen [Danish Medicines Agency]. June 13, 2018. Retrieved January 1, 2020. 
  58. "Vierte Verordnung über die den Betäubungsmitteln gleichgestellten Stoffe" (PDF). Bundesgesetzblatt Jahrgang 1967 Teil I Nr. 10 (in German). Bundesanzeiger Verlag. p. 197. Retrieved December 10, 2019. 
  59. "Anlage I BtMG" (in German). Bundesministerium der Justiz und für Verbraucherschutz [Federal Ministry of Justice and Consumer Protection]. Retrieved December 10, 2019. 
  60. "§ 29 BtMG" (in German). Bundesministerium der Justiz und für Verbraucherschutz [Federal Ministry of Justice and Consumer Protection]. Retrieved December 10, 2019. 
  61. "Noteikumi par Latvijā kontrolējamajām narkotiskajām vielām, psihotropajām vielām un prekursoriem" (in Latvian). VSIA Latvijas Vēstnesis. November 10, 2005. Retrieved January 1, 2020. 
  62. Glenn Greenwald (April 2, 2009). "Drug Decriminalization in Portugal: Lessons for Creating Fair and Successful Drug Policies". White Paper Series. Cato Institute. Retrieved January 7, 2020. 
  63. "Part I: Class A Drugs". "Misuse of Drugs Act 1971". UK Government. Retrieved January 7, 2020. 
  64. "Controlled Substances: by CSA Schedule" (PDF). U.S. Department of Justice. August 21, 2019. p. 5. Retrieved January 7, 2020.