Psilocybin mushrooms

From PsychonautWiki
(Redirected from Mushrooms)
Jump to: navigation, search
Summary sheet: Psilocybin mushrooms
Psilocybe cubensis, one of the most common psilocybin-containing mushrooms.

Psilocybin mushrooms (also known as magic mushrooms and shrooms) are a family of psychoactive mushrooms that contain the psychedelic tryptamine psilocybin. Psilocybin mushrooms occur on all continents and consist of more than 200 species, the most potent of which belong to the genus Psilocybe.[1] Like other psychedelics, psilocybin mushrooms produce their effects by acting on serotonin receptors in the brain.

Imagery found on prehistoric rock art suggests that the use of psilocybin mushrooms predates recorded history. In Mesoamerica, the mushrooms have been consumed in ritual ceremonies for 3000 years.[2] They were introduced to the West in 1955 by Gordon R. Wasson. In the 1960s, psilocybin was widely used in the experimental research of mental disorders and in psychotherapy.[2] Popularization by counterculture figures like Timothy Leary led to an explosion of recreational use, which resulted in its prohibition in 1970. Today, psilocybin mushrooms are one of the most popular psychedelics and the subject of renewed interest by researchers and clinicians.[2]

The intensity and duration of effects produced by psilocybin mushrooms can vary greatly depending on factors such as species and batch. Common doses of the popular strain P. cubensis range from 2 to 3.5 grams and last for 4 to 6 hours. Notable effects include geometric visual hallucinations, time distortion, enhanced introspection, and ego loss. Psilocybin mushrooms are commonly described by users to evoke entheogenic and mystical-type experiences that can facilitate self-reflection and personal growth even in the absence of an enjoyable experience.

Unlike most highly prohibited substances, psilocybin mushrooms are considered to be non-addictive and have low toxicity.[3] Nevertheless, adverse psychological reactions such as anxiety, paranoia, delusions and psychosis can always occur, particularly among those predisposed to mental illness.[4] For this reason, it is highly advised to use harm reduction practices if using this substance.

History and culture

Cave art in Tassili n'Ajjer, Algeria (look at the shoulders and knees)

There is evidence that suggests that psychoactive mushrooms have been used by humans in religious ceremonies for thousands of years. Murals dated 9000 to 7000 BCE found in the Sahara desert in southeast Algeria depict horned beings dressed as dancers holding mushroom-like objects.[5] 6,000-year-old pictographs discovered near the Spanish town of Villar del Humo illustrate several mushrooms that have been tentatively identified as Psilocybe hispanica, a hallucinogenic species native to the area.[6]

Archaeological artifacts from Mexico have also been interpreted by some scholars as evidence for ritual and ceremonial usage of psychoactive mushrooms in the Mayan and Aztec cultures of Mesoamerica.[citation needed] In Nahuatl, the language of the Aztecs, the mushrooms were called teonanácatl, or "God's flesh". Following the arrival of Spanish explorers to the New World in the 16th century, chroniclers reported the use of mushrooms by the natives for ceremonial and religious purposes. Accounts describe mushrooms being eaten in festivities for the accession of emperors and the celebration of successful business trips by merchants.[7] After the defeat of the Aztecs, the Spanish forbade traditional religious practices and rituals that they considered "pagan idolatry", including ceremonial mushroom use. For the next four centuries, the Indians of Mesoamerica hid their use of entheogens from the Spanish authorities.[citation needed]

American banker and amateur ethnomycologist R. Gordon Wasson studied the ritual use of psychoactive mushrooms by the native population of a Mazatec village in Mexico. In 1957, Wasson described the psychedelic visions that he experienced during these rituals in "Seeking the Magic Mushroom", an article published in the popular American weekly Life magazine.[8] Later the same year they were accompanied on a follow-up expedition by French mycologist Roger Heim, who identified several of the mushrooms as Psilocybe species.[9]

Heim cultivated the mushrooms in France, and sent samples for analysis to Albert Hofmann, a chemist employed by the Swiss pharmaceutical company Sandoz (now Novartis). Hofmann, who had in 1938 created LSD, led a research group that isolated and identified the psychoactive compounds from Psilocybe mexicana.[10][11] He and his colleagues later synthesized a number of compounds chemically related to the naturally occurring psilocybin, to see how structural changes would affect psychoactivity. These included 4-HO-DET and 4-AcO-DMT. Sandoz marketed and sold pure psilocybin under the name Indocybin to physicians and clinicians worldwide without any reports of serious complications.[12][13]

In the early 1960s, Harvard University became a testing ground for psilocybin, through the efforts of Timothy Leary and his associates Ralph Metzner and Richard Alpert. Leary obtained synthesized psilocybin from Hofmann through Sandoz pharmaceutical. Some studies, such as the Concord Prison Experiment, suggested promising results using psilocybin in clinical psychiatry.[14][15] Leary and Alpert's zealous advocacy for widespread hallucinogen use led to a well-publicized termination from Harvard. In response to concerns about the increase in unauthorized use of psychedelic substances by the general public, psilocybin and other hallucinogens exoeruebce negative press and faced increasingly restrictive laws.

In the United States, laws were passed in 1966 that prohibited the production, trade, or ingestion of hallucinogenic substances. Sandoz stopped producing LSD and psilocybin the same year.[16] Further backlash against LSD usage swept psilocybin along with it into the Schedule I category of illicit substances in 1970. Subsequent restrictions on the use of these substances in human research made funding for such projects difficult to obtain, and scientists who worked with psychedelic drugs faced being "professionally marginalized".[17]

In the 1990s, hallucinogens and their effects on human consciousness were again the subject of scientific study, particularly in Europe. Advances in the neurosciences and the availability of brain imaging techniques have provided a reason for using substances like psilocybin to probe the "neural underpinnings of psychotic symptom formation including ego disorders and hallucinations".[18] Recent studies in the United States have attracted attention from the popular press and thrust psilocybin into the vogue.[19]

Chemistry

Psilocybin, or 4-phosphoryloxy-N,N-dimethyltryptamine (4-PO-DMT) is a prodrug that is converted into the pharmacologically active compound psilocin in the body by a dephosphorylation reaction mediated by alkaline phosphatase enzymes.[20] Both psilocybin and psilocin are organic tryptamine compounds. They are chemically related to the amino acid tryptophan, and structurally similar to the neurotransmitter serotonin.

Tryptamines share a core structure comprised of a bicyclic indole heterocycle attached at R3 to an amino group via an ethyl side chain. Psilocybin is substituted at R4 of its indole heterocycle with a phosphoryloxy (-PO) functional group. It also contains two methyl groups CH3- bound to the terminal amine RN. This makes psilocybin the 4-phosphoryloxy ring-substituted analog of DMT.[21].

Psilocybin and psilocin occur in their pure forms as white crystalline powders. Both are unstable in light, particularly while in solution, although their stability at low temperatures in the dark under an inert atmosphere is very good.[22]

Pharmacology

The diagram above demonstrates the neural connections associated with sobriety in comparison to being under the influence of psilocybin as demonstrated through the use of MRI scans. The width of the links is proportional to their weight and the size of the nodes is proportional to their strength. Note that the proportion of heavy links between communities is much higher (and very different) in the psilocybin group, suggesting greater integration[23]
Further information: Serotonergic psychedelic

Psilocybin acts as a prodrug to psilocin, meaning it is not active until it is converted into psilocin in the body. Upon entering the body, psilocybin is dephosphorylated to psilocin in the intestinal mucosa by alkaline phosphatase and nonspecific esterase.[2]

Psilocin's psychedelic effects are believed to come from its agonist activity on serotonin 5-HT2A/C and 5-HT1A receptors.[2] While 5-HT2A receptor agonism is considered necessary for hallucinogenic activity, the role of other receptor subtypes is much less understood.[2]

Unlike LSD, psilocin has no significant effect on dopamine receptors and only affects the noradrenergic system at very high dosages.[24]

Subjective effects

The effects listed below are based upon the subjective effects index and personal experiences of PsychonautWiki contributors. These effects should be taken with a grain of salt and will rarely (if ever) occur all at once, but heavier doses will increase the chances of inducing a full range of effects. Likewise, adverse effects become much more likely on higher doses and may include serious injury or death.

Physical effects
Child.svg

Visual effects
Eye.svg

Cognitive effects
User.svg

Multi-sensory effects
Gears.svg

Combination effects

  • Cannabis - Cannabis majorly amplifies the sensory and cognitive effects of psilocybin mushrooms. This should be used with extreme caution, especially if one is not experienced with psychedelics. This interaction can also amplify the anxiety, confusion and delusion producing aspects of cannabis significantly. Those who choose to use this combination are advised to start off with only a fraction of their usual cannabis dose, and slow down the pace of their normal intake considerably.
  • Dissociatives - Dissociatives can enhance the geometry, euphoria, dissociation and hallucinatory effects of psilocybin mushrooms. Dissociative-induced holes, spaces, and voids while under the influence of psilocybin can result in significantly more vivid visuals than dissociatives alone, along with more intense internal hallucinations, confusion, nausea, delusions and chances of a psychotic reaction.
  • MDMA - MDMA enhances the visual, physical and cognitive effects of psilocybin. The synergy between these substances is unpredictable, and it is advised to start with lower dosages than one would take for either substance individually. The toxicity of this combination is unknown, although there is some evidence that suggests this may increase the the neurotoxic effects of MDMA.[26][27][28]
  • Alcohol - This interaction is not typically recommended due to alcohol’s ability to cause dehydration, nausea, and physical fatigue which can negatively affect an experience if taken in moderate to high dosages. This combination is, however, considered to be reasonably safe in low doses and when used responsibly, this can often "take the edge off a trip" as well as dull its psychedelic effects in a fashion somewhat similar to benzodiazepines, albeit in a more physically draining way. With psilocybin mushrooms in particular it is often recommended that the user waits until the "come down" phase if they wish to consume any alcohol due to the sometimes already nauseating and disorienting physical effects of mushrooms, especially within the first 2 - 3 hours of the experience.
  • Benzodiazepines - Depending on the dosage, benzodiazepines can slightly to completely reduce the intensity of the cognitive, physical and visual effects of a psilocybin trip. They can be very efficient at largely stopping or mitigating a bad trip at the cost of amnesia and reduced trip intensity. Caution is advised when acquiring them for this purpose, however, due to the very high addiction potential that benzodiazepines possess.
  • Psychedelics - When used in combination with other psychedelics, the physical, cognitive and visual effects of each substance intensify and synergize strongly with each other. The synergy between those substances is unpredictable, and for this reason, is generally not advised. If choosing to combine psychedelics, it is recommended to start with lower dosages than one would take for either substance individually.

Experience reports

There are currently 0 anecdotal reports which describe the effects of this compound within our experience index.

Additional experience reports can be found here:

Natural occurrence

Biological genera containing psilocybin mushrooms include Copelandia, Galerina, Gymnopilus, Inocybe, Mycena, Panaeolus, Pholiotina, Pluteus, and Psilocybe. Over 100 species are classified in the genus Psilocybe.

Some common psilocybin and psilocin containing mushroom species include:

Psilocybe

Psilocybe semilanceata, also known as the liberty cap.

Panaeolus

Panaeolus cyanescens, also known as the pan cyan.
  • Panaeolus africanus
  • Panaeolus campanulatus
  • Panaeolus cinctulus
  • Panaeolus cyanescens
  • Panaeolus subbalteatus
  • Panaeolus venezolanus

Gymnopilus

Gymnopilus luteofolius
  • Gymnopilus aeruginosus
  • Gymnopilus luteofolius
  • Gymnopilus luteus
  • Gymnopilus purpuratus

Risk of species confusion

As psilocybin mushrooms are capable of being harvested in nature, there is a major risk in misidentifying mushroom species and accidentally consuming poisonous, if not lethal varieties. This can be avoided by educating oneself in advance on how to properly identify the correct species of mushroom and the potential look-alike mushrooms found within one's local area. It is recommended to not learn to do this by oneself, but instead, have someone experienced in mushroom-picking as a mentor.

Dosage and preparation

The dosage of psilocybin mushrooms depends on the potency of the mushroom (the total psilocybin and psilocin content of the mushrooms), which varies significantly both between species and within the same species, but is typically around 0.5–2.0% of the dried weight of the mushroom.[citation needed]

The concentration of active psilocybin mushroom compounds varies not only from species to species, but also from mushroom to mushroom inside a given species, subspecies or variety. The same holds true even for different parts of the same mushroom. In the species Psilocybe samuiensis, the dried cap of the mushroom contains the most psilocybin at about 0.23%–0.90%. The mycelium contains about 0.24%–0.32%.[29]

Psilocybe cubensis

Psilocybe cubensis (also known as cubes) is one of the most commonly used species of psilocybin mushrooms. The doses for oral consumption for dried cubensis mushrooms are generally considered to be:

  • Threshold: 0.25 - 0.50 grams
  • Light: 0.5 - 1.5 grams
  • Common: 2 - 3.5 grams
  • Strong: 3.5 - 5 grams
  • Heavy: 5 grams +

Preparation methods

Preparation methods for this compound within our tutorial index include:

Research

Antidepressant effects

While further research is needed to establish the utility of psilocybin and other psychedelics in treating depression, a pilot study has observed significantly decreased depression scores in terminal cancer patients six months after treatment with psilocybin.[30] An open-label study was carried out in 2016 in the UK to investigate the feasibility, safety and efficacy of psilocybin in treating patients with unipolar treatment-resistant depression with promising results; although the study was small and involved only twelve patients, seven of those patients met formal criteria for remission one week following psilocybin treatment and five of those were still in remission from their depression at three months.[31]

The mechanism behind this is not known as of yet, but researchers have suggested that psilocin's deactivation of the medial prefrontal cortex[32] (mPFC) may be relevant to its antidepressant effects, as the mPFC is known to be elevated in depression and normalized after effective treatment.[32] mPFC hyperactivity has been associated with trait rumination.[33] Another possible factor to psilocybin's potential against depression may be that depressed patients with high levels of dysfunctional attitudes were found to have low levels of 5-HT(2A) agonism.[34][35]

Toxicity and harm potential

Radar plot showing relative physical harm, social harm, and dependence of benzodiazepines in comparison to other drugs.[36]

Psilocybin is non-addictive, is not known to cause brain damage, and has an extremely low toxicity relative to dose. Similar to other psychedelic drugs, there are relatively few physical side effects associated with acute psilocin exposure. Various studies have shown that in reasonable doses in a careful context, it presents little to no negative cognitive, psychiatric or toxic physical consequences.

Lethal dosage

The toxicity of psilocybin and psilocin is extremely low. In rats, the median lethal dose (LD50) of psilocybin when administered orally is 280 milligrams per kilogram (mg/kg). Psilocybin comprises approximately 1% of the weight of Psilocybe cubensis mushrooms and so nearly 1.7 kilograms (3.7 lb) of dried mushrooms or 17 kilograms (37 lb) of fresh mushrooms would be required for a 60 kilogram (130 lb) person to reach the 280 mg/kg LD50 value of rats. Based on the results of animal studies, the lethal dose of psilocybin has been extrapolated to be 6 grams, 1000 times greater than the effective dose of 6 milligrams.

Despite its lack of physical toxicity, however, it is still strongly recommended that one use harm reduction practices if choosing to use this substance.

Tolerance and addiction potential

Psilocybin is not habit-forming with a low abuse potential and the desire to use it can actually decrease with use. Cases of abuse and addiction have been documented but are rare.[citation needed] Notably, there it has been claimed that is virtually no withdrawal syndrome when the chronic use of this substance is ceased.[37]

Tolerance to the effects of psilocin are built almost immediately after ingestion. After that, it takes about 3 days for the tolerance to be reduced to half and 7 days to be back at baseline (in the absence of further consumption). Psilocin presents cross-tolerance with all psychedelics, meaning that after the consumption of psilocin all psychedelics will have a reduced effect.

Dangerous interactions

Although many psychoactive substances are safe to use on their own, they can become dangerous or even life-threatening when taken with other substances. The list below contains some potentially dangerous combinations, but may not include all of them. Certain combinations may be safe in low doses but still increase the possibility of injury of death. Independent research should always be conducted to ensure that a combination of two or more substances is safe before consumption.

Legal status

Internationally, psilocybin (but not psilocybin mushrooms) is a Schedule I drug under the Convention on Psychotropic Substances.

The cultivation of plants from which psychotropic substances are obtained is not controlled by the Vienna Convention. . . . Neither the crown (fruit, mescal button) of the Peyote cactus nor the roots of the plant Mimosa hostilis nor Psilocybe mushrooms themselves are included in Schedule 1, but only their respective principals, mescaline, DMT, and psilocin.

  • Austria: Psilocybin containing mushrooms are illegal to possess in dried form, to sell and to offer, give or get somebody under the SMG (Suchtmittelgesetz Österreich). It is illegal to grow them with the intention of "producing psychotropic substances" (as psilocin and psilocybin) mentioned in BGBl. III Nr. 148/1997 .[39]
  • Brazil: Possession, production and sale is illegal as it is listed on Portaria SVS/MS nº 344,[40] but mushrooms fall under religious use laws.[citation needed]
  • British Virgin Isles: The sale of mushrooms is illegal, but possession and consumption is legal.[citation needed]
  • Bulgaria: The sale of mushrooms is illegal, but possession and consumption is legal.[citation needed]
  • Belgium: Possession and sale of mushrooms have been illegal since 1988.[citation needed]
  • Canada: Psilocybin and psilocin are illegal to possess, obtain or produce without a prescription or license as they are Schedule III under the Controlled Drugs and Substances Act.[41]
  • Czech Republic: The distribution (including sale) of mushrooms is illegal, but consumption is legal. The possession of over 40 hallucinogenic caps is considered a crime if they contain more than 50mg of psilocin or the corresponding amount of psilocybin. The possession of more than 40g of hallucinogenic mycelium is considered a crime. If these limits are not exceeded, the act is considered a minor offense and a fine of up to 15 thousand CZK may be imposed.
  • Cyprus: Psilocybin mushrooms are illegal to possess, grow, sale, and consume.[citation needed]
  • Denmark: Psilocybin mushrooms are illegal to possess, grow, sale, and consume.[citation needed]
  • Finland: Psilocybin mushrooms are illegal to possess, grow, sale, and consume.[citation needed]
  • Germany: Psilocybin mushrooms are illegal to possess, grow, sale, and consume.[citation needed]
  • Greece: Psilocybin mushrooms are illegal to possess, grow, sale, and consume.[citation needed]
  • Ireland: Psilocybin mushrooms are illegal to possess, grow, sale, and consume.[citation needed]
  • Japan: Psilocybin mushrooms are illegal to possess, grow, sale, and consume.[citation needed]
  • Latvia: Hallucinogenic mushrooms, psilocin and psilocybin are Schedule I controlled substances.[42]
  • Mexico: The possession, growth, sale and consumption of mushrooms is illegal. Rules are relaxed regarding religious use however.[citation needed]
  • The Netherlands: The possession, growth, sale and consumption of mushrooms is illegal. However, due to a legal loophole, psilocybin truffles can be legally possessed, grown, sold and consumed.[citation needed]
  • New Zealand: Psilocybin is Class A.[citation needed]
  • Norway: Possession, growth, sale and consumption of mushrooms is illegal. Spores, even though not containing psilocybin, are also illegal.[citation needed]
  • Turkey: The possession, growth, sale and consumption of mushrooms is illegal.[citation needed]
  • United Kingdom: According to the 2005 Drugs Act, fresh and prepared psilocybin mushrooms are Class A.[43]
  • United States: Psilocybin and psilocin are Schedule I drugs under the Controlled Substances Act of 1970. This means it is illegal to manufacture, buy, possess, process, or distribute without a license from the Drug Enforcement Administration (DEA).[44]

See also

External links

Discussion

Literature

References

  1. Guzmán, G., Allen, J. W., & Gartz, J. (1998). A worldwide geographical distribution of the neurotropic fungi, an analysis and discussion. Ann. Mus. Civ. Rovereto, 14, 189-280.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Tylš, F., Páleníček, T., & Horáček, J. (2014). Psilocybin–summary of knowledge and new perspectives. European Neuropsychopharmacology, 24(3), 342-356. https://doi.org/10.1016/j.euroneuro.2013.12.006
  3. Lüscher, C., & Ungless, M. A. (2006). The Mechanistic Classification of Addictive Drugs, 3(11). https://doi.org/10.1371/journal.pmed.0030437
  4. Strassman, R. J. (1984). Adverse Reactions to Psychedelic Drugs: A Review of the Literature. The Journal of Nervous and Mental Disease, 172(10), 577-595. PMID: 6384428
  5. Samorini G. (1992). "The oldest representations of hallucinogenic mushrooms in the world (Sahara Desert, 9000–7000 B.P.)". Integration. 2 (3): 69–78.
  6. Akers BP, Ruiz JF, Piper A, Ruck CA (2011). "A prehistoric mural in Spain depicting neurotropic Psilocybe mushrooms?". Economic Botany. 65 (2): 121–8. doi:10.1007/s12231-011-9152-5.
  7. Hofmann A. (1980). "The Mexican relatives of LSD". LSD: My Problem Child. New York, New York: McGraw-Hill. pp. 49–71. ISBN 978-0-07-029325-0
  8. Wasson RG. (13 May 1957). "Seeking the magic mushroom". Life. Time Inc.: 101–20. ISSN 0024-3019.
  9. Heim R. (1957). "Notes préliminaires sur les agarics hallucinogènes du Mexique" [Preliminary notes on the hallucination-producing agarics of Mexico]. Revue de Mycologie (in French). 22 (1): 58–79.
  10. Hofmann A, Heim R, Brack A, Kobel H (1958). "Psilocybin, ein psychotroper Wirkstoff aus dem mexikanischen Rauschpilz Psilocybe mexicana Heim" [Psilocybin, a psychotropic drug from the Mexican magic mushroom Psilocybe mexicana Heim]. Experientia (in German). 14 (3): 107–9. doi:10.1007/BF02159243. PMID 13537892.
  11. Hofmann A, Heim R, Brack A, Kobel H, Frey A, Ott H, Petrzilka T, Troxler F (1959). "Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen" [Psilocybin and psilocin, two psychotropic substances in Mexican magic mushrooms]. Helvetica Chimica Acta (in German). 42 (5): 1557–72. doi:10.1002/hlca.19590420518.
  12. Marley G. (2010). "Psilocybin: gateway to the soul or just a good high?". Chanterelle Dreams, Amanita Nightmares: The Love, Lore, and Mystique of Mushrooms. White River Junction, Vermont: Chelsea Green Publishing. pp. 166. ISBN 1-60358-214-2.
  13. Passie T, Seifert J, Schneider U, Emrich HM (2002). "The pharmacology of psilocybin". Addiction Biology. 7 (4): 357–64. doi:10.1080/1355621021000005937. PMID 14578010.
  14. Leary T, Litwin GH, Metzner R (1963). "Reactions to psilocybin administered in a supportive environment". Journal of Nervous and Mental Disease. 137 (6): 561–73. doi:10.1097/00005053-196312000-00007. PMID 14087676.
  15. Leary T, Metzner R, Presnell M, Weil G, Schwitzgebel R, Kinne S (1965). "A new behavior change program using psilocybin". Psychotherapy: Theory, Research & Practice. 2 (2): 61–72. doi:10.1037/h0088612.
  16. Matsushima Y, Eguchi F, Kikukawa T, Matsuda T (2009). "Historical overview of psychoactive mushrooms" (PDF). Inflammation and Regeneration. 29 (1): 47–58. https://doi.org/10.2492/inflammregen.29.47. Archived from the original on April 25, 2012.
  17. Griffiths RR, Grob CS (2010). "Hallucinogens as medicine" (PDF). Scientific American. 303 (6): 77–9. https://doi.org/10.1038/scientificamerican1210-76.
  18. Studerus E, Kometer M, Hasler F, Vollenweider FX (2011). "Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies". Journal of Psychopharmacology. 25 (11): 1434–52. https://doi.org/10.1177/0269881110382466. PMID 20855349.
  19. Keim B. (1 July 2008). "Psilocybin study hints at rebirth of hallucinogen research". Wired.com. Retrieved 2011-08-08.
  20. Gilbert J, Şenyuva H (2009). Bioactive Compounds in Foods. John Wiley & Sons. p. 120. ISBN 978-1-4443-0229-5.
  21. Horita, A., & Weber, L. J. (1961). Dephosphorylation of psilocybin to psilocin by alkaline phosphatase. Proceedings of the Society for Experimental Biology and Medicine, 106(1), 32-34.
  22. Anastos, N., Barnett, N.W., Pfeffer, F. M., et al. 2006. Investigation into the temporal stability of aqueous standard solutions of psilocin and psilocybin using high performance liquid chromatography. Sci Justice ;46(2):91-96
  23. Petri, G., Expert, P., Turkheimer, F., Nutt, D., Hellyer, P. J., & Vaccarino, F. (2014). Homological scaffolds of brain functional networks, 14–18. https://doi.org/10.1098/rsif.2014.0873
  24. Psilocybin Investigator’s Brochure | http://www.maps.org/research/psilo/psilo_ib.pdf
  25. Johnson, M. W., Garcia-Romeu, A., Cosimano, M. P., & Griffiths, R. R. (2014). Pilot study of the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction. Journal of Psychopharmacology, 28(11), 983-992. https://doi.org/10.1177/0269881114548296
  26. Armstrong, B. D., Paik, E., Chhith, S., Lelievre, V., Waschek, J. A., & Howard, S. G. (2004). Potentiation of (DL)‐3, 4‐methylenedioxymethamphetamine (MDMA)‐induced toxicity by the serotonin 2A receptior partial agonist d‐lysergic acid diethylamide (LSD), and the protection of same by the serotonin 2A/2C receptor antagonist MDL 11,939. Neuroscience Research Communications, 35(2), 83-95. https://doi.org/10.1002/nrc.20023
  27. Potentiation of MDMA-induced dopamine release and serotonin neurotoxicity by 5-HT2 receptor agonists | https://indiana.pure.elsevier.com/en/publications/potentiation-of-34-methylenedioxymethamphetamine-induced-dopamine
  28. Ecstasy induces apoptosis via 5-HT(2A)-receptor stimulation in cortical neurons. | https://www.ncbi.nlm.nih.gov/pubmed/17572501
  29. Gartz J, Allen JW, Merlin MD (2004). "Ethnomycology, biochemistry, and cultivation of Psilocybe samuiensis Guzmán, Bandala and Allen, a new psychoactive fungus from Koh Samui, Thailand". Journal of Ethnopharmacology. 43 (2): 73–80. PMID 7967658. https://doi.org/10.1016/0378-8741(94)90006-X.
  30. Grob, C. S., Danforth, A. L., Chopra, G. S., Hagerty, M., McKay, C. R., Halberstadt, A. L., & Greer, G. R. (2011). Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Archives of General Psychiatry, 68(1), 71-78. https://doi.org/10.1001/archgenpsychiatry.2010.116
  31. Carhart-Harris, R. L., Bolstridge, M., Rucker, J., Day, C. M., Erritzoe, D., Kaelen, M., ... & Taylor, D. (2016). Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. The Lancet Psychiatry, 3(7), 619-627. https://doi.org/10.1016/S2215-0366(16)30065
  32. 32.0 32.1 Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., ... & Hobden, P. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences, 109(6), 2138-2143. https://doi.org/10.1073/pnas.1119598109
  33. Farb, N. A. S., Anderson, A. K., Bloch, R. T., & Segal, Z. V. (2011). Mood Linked Responses in Medial Prefrontal Cortex Predict Relapse in Patients with Recurrent Unipolar Depression. Biological Psychiatry, 70(4), 366–372. https://doi.org/10.1016/j.biopsych.2011.03.009
  34. Bhagwagar, Z., Hinz, R., Taylor, M., Fancy, S., Cowen, P., & Grasby, P. (2006). Increased 5-HT 2A receptor binding in euthymic, medication-free patients recovered from depression: a positron emission study with [11 C] MDL 100,907. American Journal of Psychiatry, 163(9), 1580-1587. http://dx.doi.org/10.1176/ajp.2006.163.9.1580
  35. Meyer, J. H., McMain, S., Kennedy, S. H., Korman, L., Brown, G. M., DaSilva, J. N., ... & Houle, S. (2003). Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm. American Journal of Psychiatry, 160(1), 90-99. https://www.doi.org/10.1176/appi.ajp.160.1.90
  36. Development of a rational scale to assess the harm of drugs of potential misuse (ScienceDirect) | http://www.sciencedirect.com/science/article/pii/S0140673607604644
  37. Diaz, Jaime (1996). How Drugs Influence Behavior: A Neurobehavioral Approach. Englewood Cliffs: Prentice Hall. ISBN 9780023287640
  38. Talaie, H., Panahandeh, R., Fayaznouri, M. R., Asadi, Z., & Abdollahi, M. (2009). Dose-independent occurrence of seizure with tramadol. Journal of medical toxicology, 5(2), 63-67. doi:10.1007/BF03161089
  39. https://www.jusline.at/gesetz/smg/paragraf/27
  40. http://portal.anvisa.gov.br/documents/10181/3115436/%281%29RDC_130_2016_.pdf/fc7ea407-3ff5-4fc1-bcfe-2f37504d28b7
  41. Controlled Drugs and Substances Act of Canada
  42. Noteikumi par Latvijā kontrolējamajām narkotiskajām vielām, psihotropajām vielām un prekursoriem (I saraksts) | http://likumi.lv/doc.php?id=121086
  43. Legislation - Drugs Act 2005| http://www.legislation.gov.uk/ukpga/2005/17/contents
  44. FDA - Controlled Substances Act| http://www.fda.gov/regulatoryinformation/legislation/ucm148726.htm