From PsychonautWiki
Jump to: navigation, search

Skull and crossbones darktextred2.png

Ibogaine can cause life-threatening heart complications.[1]

It is strongly discouraged to use this substance in high doses or multiple days in a row. A trip sitter with proper medical training and equipment must be present. Please see this section for more details.

Summary sheet: Ibogaine
Chemical Nomenclature
Common names Ibogaine
Substitutive name 10-Methoxyibogamine
Systematic name 7-Ethyl-2-methoxy-6,6a,7,8,9,10,12,13-octahydro-5H-6,9-methano-pyrido[1',2':1,2]azepino[4,5-b]indole
Class Membership
Psychoactive class Psychedelic
Chemical class Tryptamine
Routes of Administration

WARNING: Always start with lower doses due to differences between individual body weight, tolerance, metabolism, and personal sensitivity. See responsible use section.

Threshold Common Heavy
- - 15 - -
Light Strong
Common 15 - 22 mg/kg of body weight
Strong Strong doses may result in fatal heart complications.
Onset 30 - 180 minutes
Peak 18 - 36 hours
After effects 24 - 72 hours

DISCLAIMER: PW's dosage information is gathered from users and resources for educational purposes only. It is not a recommendation and should be verified with other sources for accuracy.

10-Methoxyibogamine (commonly known as ibogaine) is a naturally occurring psychedelic substance of the tryptamine class. Ibogaine is an indole alkaloid found in some plants of the Apocynaceae family such as Tabernanthe iboga, Voacanga africana and Tabernaemontana undulata.

In West Central Africa, low dosages of Tabernanthe iboga extracts have been used by indigenous people against fatigue, hunger and thirst. Higher dosages capable of inducing visionary states are used for initiation rituals during religious ceremonies.[2] Ibogaine's medical history in the West began in the early 1900s when it was indicated for use as a neuromuscular stimulant.[3] In the 1940s and 1950s, its suitability as potential cardiovascular drug was studied.[4] Later in the 1960s, the substance received much attention because of its potential applicability as an anti-addiction medication.

The pharmacology of ibogaine is complex and poorly understood. While largely behaving as a serotonergic psychedelic, ibogaine interacts with numerous brain systems including transporters, opioid receptors, sigma receptors, glutamate receptors, and nicotinic receptors.[5] Ibogaine’s complex pharmacology entails a significant potential to generate adverse effects, particularly on the cardiovascular system. Its use has been associated with at least 12 deaths since 1990.[6]

Ibogaine is not currently approved for any medical uses in the United States.[6] Preliminary research in animals indicates that it could potentially be used for treatment of addiction;[6] however, there is a lack of non-anecdotal data in humans.[6] Although not licensed as therapeutic drug and despite safety concerns, ibogaine is currently used as an anti-addiction medication in dozens of clinics worldwide.[6]

History and culture

History icon.svg

This History and Culture section is a stub.

As such, it may contain incomplete or wrong information. You can help by expanding it.

The Iboga tree is the central pillar of the Bwiti religion practiced in West-Central Africa, mainly Gabon, Cameroon, and the Republic of the Congo, which uses the alkaloid-containing roots of the plant for its psychoactive properties in a number of ceremonies. Ibogaine is also used by indigenous peoples in low doses to combat fatigue, hunger, and thirst.[7]

Research of ibogaine started in late 19th century. A published description of the ceremonial use of T. iboga in Gabon appears in 1885. Ibogaine was first extracted and crystallized from the T. iboga root in 1901.[7] The total synthesis of ibogaine was described in 1956 and structural elucidation by X-ray crystallography was completed in 1960.[8][9]


Ibogaine, or 12-methoxyibogamine, is an indole alkaloid molecule of the tryptamine chemical class. Tryptamines share a core structure composed of a bicyclic indole heterocycle attached at R3 to an amino group via an ethyl side chain. While ibogaine contains a tryptamine backbone, the structure features substitutions distinct from other hallucinogenic tryptamines.

Ibogaine is substituted at R10 of its structure with a methoxy group. The location of this substitution is identical to other R5 substituted tryptamines, notably 5-MeO-DMT. The traditional amino attached ethyl chain of tryptamine is incorporated into a seven member nitrogenous azepine ring. The azepine ring is fused to three interlocked cyclohexane rings, attached at the integrated tryptamine nitrogen of azepine and two carbons over. Attached to the fusion of cyclohexane rings is an ethyl chain at R7.

Ibogaine is obtained either by extraction from the iboga plant or by semi-synthesis from the precursor compound voacangine,[10] another plant alkaloid.


Further information: Serotonergic psychedelic

Ibogaine is believed to produce its psychedelic effects from its binding efficacy at the 5-HT2A receptor. However, the role of these interactions and how they result in the psychedelic experience continues to remain elusive.

Ibogaine is rapidly metabolized in the human body into noribogaine. Noribogaine acts as a serotonin reuptake inhibitor. It also acts as a moderate κ-opioid receptor agonist[11] and weak µ-opioid receptor agonist[12] or weak partial agonist.[13] It is possible that the action of ibogaine at the kappa opioid receptor may contribute significantly to the psychoactive effects. Salvia divinorum is another plant recognized for its strong hallucinogenic properties; it contains the chemical salvinorin A which is also a highly selective kappa opioid agonist.

Both ibogaine and noribogaine have a plasma half-life of around two hours in rats,[14] although the half-life of noribogaine is slightly longer than that of the parent compound. It is proposed that ibogaine is deposited in fat and metabolized into noribogaine as it is released. [15] After ibogaine ingestion in humans, noribogaine shows higher plasma levels than ibogaine and is detected for a longer period than ibogaine.[16] Noribogaine is also more potent than ibogaine in rat drug discrimination assays when tested for the subjective effects of ibogaine.[17]

Ibogaine also has activity as an NMDA receptor antagonist.[citation needed]

Ki-values in μM[18] (a smaller value demonstrates higher binding affinity)
Receptor Ibogaine Noribogaine
κ-opioid 2.2 0.61
μ-opioid 2.0 0.68
δ-opioid >10 5.2
NMDA 3.1 15
5-HT2A 16 >100
5-HT2C >10 >10
5-HT3 2.6 >100
σ1 2.5 11
σ2 0.4 19

Subjective effects

This subjective effects section is a stub.

As such, it is still in progress and may contain incomplete or wrong information.

You can help by expanding it.

The effects listed below are based upon the subjective effects index and personal experiences of PsychonautWiki contributors. These effects should be taken with a grain of salt and will rarely (if ever) occur all at once, but heavier doses will increase the chances of inducing a full range of effects. Likewise, adverse effects become much more likely on higher doses and may include serious injury or death.

Physical effects

Disconnective effects

Cognitive effects

Multi-sensory effects

Transpersonal effects

Experience reports

There are currently no anecdotal reports which describe the effects of this compound within our experience index. Additional experience reports can be found here:

Natural sources

Ibiogaine can be found within a variety of natural sources which are primarily found on the African continent.

The most common of these are listed below.


Addiction treatment

Research suggests that ibogaine may be useful in treating dependence on other substances such as alcohol, methamphetamine, and nicotine and may affect compulsive behavioral patterns not involving substance abuse or chemical dependence. Researchers note that there remains a "need for systematic investigation in a conventional clinical research setting."[20]

Many users of ibogaine report experiencing visual phenomena during a waking dream state, such as instructive replays of life events that led to their addiction, while others report therapeutic shamanic visions that help them conquer the fears and negative emotions that might drive their addiction. It is proposed that intensive counseling, therapy and aftercare during the interruption period following treatment is of significant value. Some individuals require a second or third treatment session with ibogaine over the course of the next 12 to 18 months. A minority of individuals relapse completely into opiate addiction within days or weeks. A comprehensive article on the subject of ibogaine therapy detailing the procedure, effects and aftereffects is found in "Ibogaine in the Treatment of Chemical Dependence Disorders: Clinical Perspectives".[21] Ibogaine has also been reported in multiple small-study cohorts to reduce cravings for methamphetamine.[22]

There is also evidence that this type of treatment works with LSD, which has been shown to have a therapeutic effect on alcoholism. Both ibogaine and LSD appear to be effective for encouraging introspection and giving the user occasion to reflect on the sources of their addiction, while also producing an intense, transformative experience that can put established patterns of behaviour into perspective;[23] ibogaine has the added benefit of preventing withdrawal effects.[24]

Toxicity and harm potential


This toxicity and harm potential section is a stub.

As such, it may contain incomplete or even dangerously wrong information. You can help by expanding or correcting it.
We also recommend that you conduct independent research and use harm reduction practices when using this substance.

Ibogaine has been associated with life-threatening heart complications, such as QT prolongation. It can be taken safely, but only under the supervision of trained medical professionals.

Tolerance and addiction potential

Ibogaine is not habit-forming and the desire to use it can actually decrease with regular consumption. Like with most psychedelics it is most often thought to be self-regulating.

Legal status

Ibogaine is unregulated and unlicensed in most countries.[25][26] Some exceptions are listed below.

  • Brazil: On January 14, 2016, Ibogaine was legalized for prescription use.[27]
  • Canada: As of 2009, ibogaine is unregulated.[28][29]
  • Germany: Ibogaine is unregulated, but for medical use it can be regulated by the pharmacy rules (AMG).[citation needed]
  • Mexico: As of 2009, ibogaine is unregulated.[30]
  • New Zealand: Ibogaine was gazetted in 2009 as a non-approved prescription medicine.[31]
  • Norway: Ibogaine is illegal (as are all tryptamine derivatives).[32]
  • Sweden: Ibogaine is schedule I.[33]
  • United Kingdom: It is illegal to produce, supply, or import this drug under the Psychoactive Substance Act, which came into effect on May 26th, 2016.[34]
  • United States: Ibogaine is classified as a Schedule I drug,[35] and is not currently approved for addiction treatment (or any other therapeutic use) because of its hallucinogenic, cardiovascular and possibly neurotoxic side effects, as well as the scarcity of safety and efficacy data in human subjects.[36]

See also

External links



  • Mačiulaitis, R., Kontrimavičiūtė, V., Bressolle, F. M. M., & Briedis, V. (2008). Ibogaine, an anti-addictive drug: pharmacology and time to go further in development. A narrative review. Human & experimental toxicology, 27(3), 181-194. https://doi.org/10.1177/0960327107087802.
  • Koenig, X., & Hilber, K. (2015). The anti-addiction drug ibogaine and the heart: a delicate relation. Molecules, 20(2), 2208-2228. https://doi.org/10.3390/molecules20022208


  1. Koenig, X., & Hilber, K. (2015). The anti-addiction drug ibogaine and the heart: a delicate relation. Molecules, 20(2), 2208-2228. https://doi.org/10.3390/molecules20022208
  2. Koenig, X., & Hilber, K. (2015). The anti-addiction drug ibogaine and the heart: a delicate relation. Molecules, 20(2), 2208-2228.
  3. Alper, K.R. Ibogaine: A review. Alkaloids Chem. Biol. 2001, 56, 1–38.
  4. Schneider, J.A.; Rinehart, R.K. Analysis of the cardiovascular action of ibogaine hydrochlorid. Arch. Int. Pharmacodyn. Ther. 1957, 110, 92–102.
  5. Mačiulaitis, R., Kontrimavičiūtė, V., Bressolle, F. M. M., & Briedis, V. (2008). Ibogaine, an anti-addictive drug: pharmacology and time to go further in development. A narrative review. Human & Experimental Toxicology, 27(3), 181-194. https://doi.org/10.1177/0960327107087802.
  6. 6.0 6.1 6.2 6.3 6.4 Koenig, Xaver; Hilber, Karlheinz (2015). "The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation". Molecules. 20 (2): 2208–2228. doi:10.3390/molecules20022208. ISSN 1420-3049. 
  7. 7.0 7.1 Mačiulaitis, R., Kontrimavičiūtė, V., Bressolle, F. M. M., & Briedis, V. (2008). Ibogaine, an anti-addictive drug: pharmacology and time to go further in development. A narrative review. Human & experimental toxicology, 27(3), 181-194.
  8. Crystal and molecular structure of ibogaine: An alkaloid from Stemmadenia galeottiana | http://link.springer.com/article/10.1007%2FBF01181911
  9. The structure of ibogaine | http://scripts.iucr.org/cgi-bin/paper?S0365110X60001369
  10. Iboga Extraction Manual | http://www.puzzlepiece.org/ibogaine/literature/iboga_extraction_manual.pdf
  11. Noribogaine is a G-protein biased κ-opioid receptor agonist | https://www.ncbi.nlm.nih.gov/pubmed/26302653
  12. Noribogaine is a G-protein biased κ-opioid receptor agonist | https://www.ncbi.nlm.nih.gov/pubmed/26302653?dopt=Abstract
  13. Effect of Iboga alkaloids on µ-opioid receptor-coupled G protein activation | https://www.ncbi.nlm.nih.gov/pubmed/24204784
  14. In vivo neurobiological effects of ibogaine and its O-desmethyl metabolite, 12-hydroxyibogamine (noribogaine), in rats | https://www.ncbi.nlm.nih.gov/pubmed/11303040
  15. Pharmacokinetic characterization of the indole alkaloid ibogaine in rats | https://www.ncbi.nlm.nih.gov/pubmed/10849889
  16. Ibogaine: complex pharmacokinetics, concerns for safety, and preliminary efficacy measures | https://www.ncbi.nlm.nih.gov/pubmed/11085338
  17. Noribogaine generalization to the ibogaine stimulus: correlation with noribogaine concentration in rat brain | https://www.ncbi.nlm.nih.gov/pubmed/10379526
  18. A contemporary history of ibogaine in the United States and Europe | http://www.sciencedirect.com/science/article/pii/S0099959801560186
  19. ibogaine in the treatment of chemical dependence disorders: clinical perspectives | http://www.maps.org/news-letters/v05n3/05316ibo.html
  20. Treatment of acute opioid withdrawal with ibogaine | https://www.ncbi.nlm.nih.gov/pubmed/10506904
  21. ibogaine in the treatment of chemical dependence disorders: clinical perspectives | http://www.maps.org/news-letters/v05n3/05316ibo.html
  22. Giannini, A. James (1997). Drugs of Abuse (2 ed.). Practice Management Information Corporation. ISBN 1-57066-053-0.
  23. A clinical study of LSD treatment in alcoholism | https://www.ncbi.nlm.nih.gov/pubmed/5798383
  24. Treatment of acute opioid withdrawal with ibogaine | https://www.ncbi.nlm.nih.gov/pubmed/10506904
  25. Can a hallucinogen from Africa cure addiction? | http://www.bbc.com/news/magazine-17666589
  26. The Shaman Will See You Now | http://www.villagevoice.com/news/the-shaman-will-see-you-now-6440113
  27. https://www.ibogainealliance.org/wp-content/uploads/2016/01/CONSELHO-ESTADUAL-DE-POLI%CC%81TICAS-SOBRE-DROGAS.pdf
  28. http://www.straight.com/article-116274/ibogaine-a-one-way-trip-to-sobriety-pot-head-says
  29. http://laws-lois.justice.gc.ca/eng/acts/C-38.8/
  30. http://www.villagevoice.com/news/ibogaine-can-it-cure-addiction-without-the-hallucinogenic-trip-6437311
  31. http://www.medsafe.govt.nz/profs/class/mccMin03Nov2009.htm
  32. https://lovdata.no/dokument/SF/forskrift/2013-02-14-199
  33. https://lakemedelsverket.se/upload/lvfs/LVFS%201997-12.pdf
  34. Psychoactive Substances Act 2016 (Legislation.gov.uk) | http://www.legislation.gov.uk/ukpga/2016/2/contents/enacted
  35. https://www.deadiversion.usdoj.gov/schedules/orangebook/orangebook.pdf
  36. http://www.drugwarfacts.org/cms/Ibogaine#sthash.sKX0AVkG.acvAqx4Q.dpbs