Naturally occurring sources
Naturally occurring sources refers to psychoactive chemicals or their precursors that already exist in nature. This is in contrast to synthetic psychoactive compounds which are artificially produced or designed in laboratories. These natural chemicals can often be reproduced synthetically as well, though notably they appear in nature or through human cultivation.
Proposed origins
There are a variety of proposed reasons for the appearance of psychoactive substances in organisms including the following examples:
Selective breeding
Selective breeding is a method used by cultivators to add or remove traits from successive generations of organisms by breeding together those that have the preferred properties in hopes of developing a desirable genetic strain. This may have resulted in both the potency and appearance of psychoactive substance(s) which the cultivators wished to produce.[1]
Defense mechanism
Another proposed reason for the presence of psychoactive substances in nature is their use as a defence mechanism. Through natural selection an organism may develop a poison or toxin useful for fending off predators,[2] as can be seen in Latrodectus Spiders who's psychoactive Latrotoxin has no reward value, and instead poses a threat to others.
Reward symbiosis
It is also possible that co-evolution encouraged psychoactive organisms to appear as a means of propagation. That is; in the same way sweet fruits were naturally selected by animals spreading their contained seeds, so were psychoactive flora that posed some benefit to the animals.[3]
Genetic similarity
An incidental cause of the prevalence of these substances is the shared genetic origins of the organisms. Given that they share a great deal of genetic code it is reasonable to assume that this may have been a factor in producing chemicals similar enough to neurotransmitters so as to activate receptor sites. For example many psychoactive chemicals are biosynthesized from amino acids such as tryptophan, while in humans this amino acid is used to make serotonin. The result is that some of the tryptamines in nature are serotonergic agonists when consumed.
Historical significance
The use of psychoactive substances is deeply rooted in human culture and dates back to pre-history. Early societies often incorporated these organisms into their traditions in medicine, spirituality, or recreation, such as the use of soma in the origins of Hinduism, and many of these uses continue into the modern day. Some common examples of this are the use of wine containing Ethanol in Christian communion, and Ayahuasca among indigenous peoples of the Amazon.
Many of these organisms have been instrumental to the progress of various scientific fields, such as Biology, Medicine, Psychonautics, and continue to reveal their importance with their involvement in major discoveries, such as the discovery of cannabinoid receptors[4] preceding our knowledge of endocannabinoids.[5]
Precluding endogenous chemicals, many of these organisms served as humanities only means of altering neurochemistry until the advent of synthetic psychoactives during the modern age. They have been at the forefront of major historical developments, such as pharmacotherapy, the funding of organized crime, the psychedelic era of the 60's, and the current "War on Drugs".
Examples
Below is an index of articles regarding natural sources of psychoactive substances. Other than inanimate sources they are categorized by kingdom of organism with sections for each applicable class of psychoactivity, sub-sections are given to active constituents, and finally the taxonomy and common name. Names may appear more than once if they contain a variety of substances, or their active substance has a variety of effects. Please note the quantity of substance obtained through an organism is not always safe and/or effective at common levels of consumption, but they are here included for sake of completeness. In addition some of the organisms are toxic or dangerous and thus proper research and preparation is recommended before attempting to personally investigate their activity.
Botanical sources
|
Farming techniques
Datasheets
Botanical sources (Unknown)
|
Mycological sources
![]()
|
Farming techniques
Datasheets
|
Zoological sources
These animals produce venom used for self-defense against predators. Invertebrates like insects deliver stings, or bites, whilst vertebrates like frogs and toads are "milked" for secretion that are either smoked (eg. Colorado River Toad) or burned into the skin (eg. kambo).
|
Farming techniques
Datasheets
|
Inanimate sources
![]()
|
Datasheets
|
External links
- List of psychoactive plants, fungi, and animals (Wikipedia)
- List of psychoactive plants (Wikipedia)
- Psychedelics and ecology (Wikipedia)
- Erowid Medicinal Herb Vaults
- Erowid Psychoactive Plant & Fungi Vaults
- Plants that contain safrole
- List of psychoactive plants from Wikimili
- By species
- By constitution
- By routes of administration
References
- ↑ ARTIFICIAL SELECTION: A POWERFUL TOOL FOR ECOLOGISTS | http://onlinelibrary.wiley.com/doi/10.1890/0012-9658(2003)084%5B1650:ASAPTF%5D2.0.CO;2/abstract
- ↑ Nicotine's Defensive Function in Nature | http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0020217
- ↑ Evolution And Addiction | http://onlinelibrary.wiley.com/doi/10.1046/j.1360-0443.2002.00086.x/abstract
- ↑ Determination and characterization of a cannabinoid receptor in rat brain | http://molpharm.aspetjournals.org/content/34/5/605.long
- ↑ The Discovery of the Endocannabinoid System | http://www.beyondthc.com/wp-content/uploads/2012/07/eCBSystemLee.pdf
- ↑ Studies on the alkaloid composition of the Hawaiian Baby Woodrose Argyreia nervosa, a common legal high | http://www.fsijournal.org/article/S0379-0738(15)00074-2/abstract
- ↑ Chao JM, Der Marderosian AH (1973). "Ergoline alkaloidal constituents of Hawaiian baby wood rose, Argyreia nervosa (Burmf) Bojer". J. Pharm. Sci. 62 (4): 588–91. doi:10.1002/jps.2600620409.
- ↑ Argyreia osyrensis Wikipedia |
- ↑ Stictocardia queenslandica Wikipedia
- ↑ Charles Savage, Willis W. Harman and James Fadiman, Ipomoea purpurea: A Naturally Occurring Psychedelic
- ↑ The Pharmacological and Epidemiological Aspects of Adolescent Drug Dependance pg 79 | https://books.google.ca/books?id=CQclBQAAQBAJ&pg=PA80&lpg=PA80&dq=turbina+corymbosa+alkaloid+content&source=bl&ots=RrOmUa544R&sig=lglxyvKtI-LOxmM0Bqu8GXhqWQY&hl=en&sa=X&ved=0ahUKEwjCg_rakKDMAhVjuIMKHZWTBxoQ6AEIZjAJ#v=onepage&q=ipomoea%20violacea&f=false
- ↑ "Show Plant". phytochem.nal.usda.gov.
- ↑ "Show Plant". phytochem.nal.usda.gov.
- ↑ The Pharmacological and Epidemiological Aspects of Adolescent Drug Dependance pg 80 | https://books.google.ca/books?id=CQclBQAAQBAJ&pg=PA80&lpg=PA80&dq=turbina+corymbosa+alkaloid+content&source=bl&ots=RrOmUa544R&sig=lglxyvKtI-LOxmM0Bqu8GXhqWQY&hl=en&sa=X&ved=0ahUKEwjCg_rakKDMAhVjuIMKHZWTBxoQ6AEIZjAJ#v=onepage&q=turbina%20corymbosa%20alkaloid%20content&f=false
- ↑ "Ololiuqui (Rivea corymbosa) im GIFTPFLANZEN.COMpendium - giftpflanzen.com". www.giftpflanzen.com. Retrieved 2008-04-18.
- ↑ 16.0 16.1 16.2 16.3 16.4 16.5 16.6 New mescaline concentrations from 14 taxa/cultivars of Echinopsis spp. (Cactaceae) (“San Pedro”) and their relevance to shamanic practice | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.668.3565&rep=rep1&type=pdf
- ↑ 17.0 17.1 17.2 17.3 Alkaloid content in relation to ethnobotanical use of Trichocereus pachanoi and related taxa | http://gradworks.umi.com/14/78/1478388.html
- ↑ Cactus alkaloids. XXXVI. Mescaline and related compounds from Trichocereus peruvianus. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/600028
- ↑ Cactus Alkaloids. I. Trichocereus terscheckii (Parmentier) Britton and Rose | http://pubs.acs.org/doi/abs/10.1021/ja01148a097
- ↑ Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
- ↑ Lophophora diffusa (Croizat) Bravo | http://sacredcacti.com/blog/diffusa/
- ↑ [Estimation of mescaline and pellotine in Lophophora coulter plants (Cactaceae) by means of the oscillographic polarography]. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/647075
- ↑ Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
- ↑ Lophophora diffusa (Croizat) Bravo | http://sacredcacti.com/blog/diffusa/
- ↑ Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
- ↑ [Estimation of mescaline and pellotine in Lophophora coulter plants (Cactaceae) by means of the oscillographic polarography]. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/647075
- ↑ Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
- ↑ [Estimation of mescaline and pellotine in Lophophora coulter plants (Cactaceae) by means of the oscillographic polarography]. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/647075
- ↑ Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
- ↑ Reported analysis of Lophophora williamsii | http://sacredcacti.com/blog/lophophora-williamsii-analysis/
- ↑ Arundo donax mentioned in "DMT is Everywhere" | https://www.erowid.org/plants/arundo_donax/arundo_donax_info2.shtml
- ↑ Phalaris FAQ | https://www.erowid.org/plants/phalaris/phalaris_faq.shtml
- ↑ Bufotenin | https://wiki.dmt-nexus.me/Bufotenin#Phalaris_spp.
- ↑ Arundo donax mentioned in "DMT is Everywhere" | https://www.erowid.org/plants/arundo_donax/arundo_donax_info2.shtml
- ↑ Pharmacotheon page 246 | https://books.google.ca/books?id=VMjwAAAAMAAJ&focus=searchwithinvolume&q=delosperma
- ↑ Phalaris FAQ | https://www.erowid.org/plants/phalaris/phalaris_faq.shtml
- ↑ Tryptamine Carriers FAQ | http://deoxy.org/trypfaq.htm#phalaris
- ↑ ALKALOID CONTENT OF REED CANARYGRASS (Phalaris arundinaceae L.) AS DETERMINED BY GAS-LIQUID CHROMATOGRAPHY | http://www.nrcresearchpress.com/doi/abs/10.4141/cjps90-132#.VxkL5_krJhE
- ↑ Arundo donax mentioned in "DMT is Everywhere" | https://www.erowid.org/plants/arundo_donax/arundo_donax_info2.shtml
- ↑ Pharmacotheon page 246 | https://books.google.ca/books?id=VMjwAAAAMAAJ&focus=searchwithinvolume&q=delosperma
- ↑ Chemotaxonomie der Pflanzen: Band XIb-1: Leguminosae Teil 2: Caesalpinioideae und Mimosoideae | https://books.google.ca/books?id=bUV8C6iLFkEC&q=199#v=snippet&q=199&f=false
- ↑ Pharmahuasca, Anahuasca and Vinho da Jurema: Human Pharmacology of Oral DMT Plus Harmine | http://web.archive.org/web/20120124034100/http://www.santodaime.it/Library/NATURALSCIENCES/ott98a_english.htm
- ↑ Tryptamine Carriers FAQ | http://deoxy.org/trypfaq.htm#phalaris
- ↑ Phalaris FAQ | https://www.erowid.org/plants/phalaris/phalaris_faq.shtml
- ↑ Pharmacotheon page 246 | https://books.google.ca/books?id=VMjwAAAAMAAJ&focus=searchwithinvolume&q=phragmites+australis
- ↑ Psychotria viridis DMT Contents and Dosages | https://www.erowid.org/plants/psychotria/psychotria_info1.shtml
- ↑ Shulgin, A. & Shulgin, A. 1997. TIHKAL. Transform Press, California.
- ↑ List of psychoactive acacias wikipedia | https://en.wikipedia.org/wiki/List_of_Acacia_species_known_to_contain_psychoactive_alkaloids
- ↑ Acacia acuminata Wikipedia | https://en.wikipedia.org/wiki/Acacia_acuminata
- ↑ Acacia acuminata dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_acuminata
- ↑ Acacia baileyana Wikipedia | https://en.wikipedia.org/wiki/Acacia_baileyana
- ↑ Acacia baileyana dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_baileyana
- ↑ Acacia burkittii wikipedia | https://en.wikipedia.org/wiki/Acacia_burkittii
- ↑ Acacia burkitii dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_burkittii
- ↑ Acacia confusa Wikipedia | https://en.wikipedia.org/wiki/Acacia_confusa
- ↑ Acacia confusa dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_confusa
- ↑ Acacia courtii DMT-Nexus| https://wiki.dmt-nexus.me/Acacia_courtii
- ↑ Acacia concurrens Wikipedia | https://en.wikipedia.org/wiki/Acacia_concurrens
- ↑ Acacia floribunda Wikipedia | https://en.wikipedia.org/wiki/Acacia_floribunda
- ↑ Acacia floribunda dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_floribunda
- ↑ Acacia jibberdingensis wikipedia | https://en.wikipedia.org/wiki/Acacia_jibberdingensis
- ↑ Acacia longifolia Wikipedia | https://en.wikipedia.org/wiki/Acacia_longifolia
- ↑ Acacia longifolia dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_longifolia
- ↑ Acacia maidenii Wikipedia | https://en.wikipedia.org/wiki/Acacia_maidenii
- ↑ Acacia maidenii dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_maidenii
- ↑ Acacia neurophylla wikipedia | https://en.wikipedia.org/wiki/Acacia_neurophylla
- ↑ Acacia obtusifolia Wikipedia | https://en.wikipedia.org/wiki/Acacia_obtusifolia
- ↑ Acacia obtusifolia dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_obtusifolia
- ↑ Acacia phlebophylla Wikipedia | https://en.wikipedia.org/wiki/Acacia_phlebophylla
- ↑ Acacia phlebophylla dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_phlebophylla
- ↑ Acacia prominens Wikipedia | https://en.wikipedia.org/wiki/Acacia_prominens
- ↑ Acacia simplex Wikipedia | https://en.wikipedia.org/wiki/Acacia_simplex
- ↑ The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
- ↑ IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
- ↑ Extraction Studies of Tabernanthe Iboga and Voacanga Africana | http://www.tandfonline.com/doi/abs/10.1080/1057563029001/4881#.Vxu8Y_krJhE
- ↑ The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
- ↑ IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
- ↑ Extraction Studies of Tabernanthe Iboga and Voacanga Africana | http://www.tandfonline.com/doi/abs/10.1080/1057563029001/4881#.Vxu8Y_krJhE
- ↑ The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
- ↑ IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
- ↑ 81.0 81.1 Opioid activity of alkaloids extracted from Picralima nitida (fam. Apocynaceae). (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/9683021
- ↑ The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
- ↑ IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
- ↑ Extraction Studies of Tabernanthe Iboga and Voacanga Africana | http://www.tandfonline.com/doi/abs/10.1080/1057563029001/4881#.Vxu8Y_krJhE
- ↑ The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
- ↑ IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
- ↑ Extraction Studies of Tabernanthe Iboga and Voacanga Africana | http://www.tandfonline.com/doi/abs/10.1080/1057563029001/4881#.Vxu8Y_krJhE
- ↑ The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
- ↑ IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
- ↑ Nepetalactone: a new opioid analgesic from Nepeta caesarea Boiss. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/9720633
- ↑ Structure and stereochemistry 4a.beta.,7.alpha.,7a.beta.-nepetalactone from Nepeta mussini and its relationship to the 4a.alpha.,7.alpha.,7a.alpha.- and 4a.alpha.,7.alpha.,7a.beta.-nepetalactones from N. cataria | http://pubs.acs.org/doi/abs/10.1021/jo01307a016
- ↑ Salvia divinorum drug profile| http://www.emcdda.europa.eu/publications/drug-profiles/salvia
- ↑ Salvia Recognita drug profile | https://www.ncbi.nlm.nih.gov/m/pubmed/28722248/
- ↑ Salvia Glutinosa drug profile | https://www.ncbi.nlm.nih.gov/m/pubmed/28722248/
- ↑ http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532008000500021 | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532008000500021
- ↑ The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
- ↑ IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
- ↑ Extraction Studies of Tabernanthe Iboga and Voacanga Africana | http://www.tandfonline.com/doi/abs/10.1080/1057563029001/4881#.Vxu8Y_krJhE
- ↑ The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
- ↑ IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
- ↑ Extraction Studies of Tabernanthe Iboga and Voacanga Africana | http://www.tandfonline.com/doi/abs/10.1080/1057563029001/4881#.Vxu8Y_krJhE
- ↑ The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
- ↑ IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
- ↑ Jansen, S. A., Kleerekooper, I., Hofman, Z. L., Kappen, I. F., Stary-Weinzinger, A., & van der Heyden, M. A. (2012). Grayanotoxin Poisoning:‘Mad Honey Disease’ and Beyond. Cardiovascular Toxicology, 12(3), 208-215. https://doi.org/10.1007/s12012-012-9162-2
- ↑ Pomeroy, A. R., & Raper, C. (1971). Pyrrolizidine alkaloids: actions on muscarinic receptors in the guinea-pig ileum. British journal of pharmacology, 41(4), 683. https://doi.org/10.1111/j.1476-5381.1971.tb07076.x
- ↑ 106.0 106.1 106.2 106.3 106.4 Aronson, J. K. (Ed.). (2015). Meyler's side effects of drugs: the international encyclopedia of adverse drug reactions and interactions. Elsevier.
- ↑ Duboisia hopwoodii Wikipedia | https://en.wikipedia.org/wiki/Duboisia_hopwoodii
- ↑ |Duboisia leichhardtii Wikipedia | https://en.wikipedia.org/wiki/Duboisia
- ↑ |Duboisia myoporoides Wikipedia | https://en.wikipedia.org/wiki/Duboisia_myoporoides
- ↑ Erythroxylum ecarinatum wikipedia | https://en.wikipedia.org/wiki/Erythroxylum_ecarinatum
- ↑ Erythroxylum ecarinatum Web Archive | https://web.archive.org/web/20070926234938/http://users.cyberone.com.au/bwalters/rareplants/erythroxylum_ecarinatum.htm
- ↑ Erythroxylum vaccinifolium wikipedia | https://en.wikipedia.org/wiki/Erythroxylum_vaccinifolium
- ↑ Opioid activity of alkaloids extracted from Picralima nitida (fam. Apocynaceae). (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/9683021
- ↑ Opioid activity of alkaloids extracted from Picralima nitida (fam. Apocynaceae). (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/9683021
- ↑ Nepetalactone: a new opioid analgesic from Nepeta caesarea Boiss. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/9720633
- ↑ Structure and stereochemistry 4a.beta.,7.alpha.,7a.beta.-nepetalactone from Nepeta mussini and its relationship to the 4a.alpha.,7.alpha.,7a.alpha.- and 4a.alpha.,7.alpha.,7a.beta.-nepetalactones from N. cataria | http://pubs.acs.org/doi/abs/10.1021/jo01307a016
- ↑ Identification of the putative binding pocket of valerenic acid on GABAA receptors using docking studies and site-directed mutagenesis. (PubMed.gov / NCBI) | https://www.ncbi.nlm.nih.gov/pubmed/26375408
- ↑ Anxiolytic Activity of a Phytochemically Characterized Passiflora incarnata Extract is Mediated via the GABAergic System | https://dx.doi.org/10.1055/s-0028-1088322
- ↑ Possible involvement of GABA A-benzodiazepine receptor in the anxiolytic-like effect induced by Passiflora actinia extracts in mice | https://doi.org/10.1016/j.jep.2006.11.021
- ↑ Erythroxylum coca Wikipedia | https://en.wikipedia.org/wiki/Erythroxylum_coca
- ↑ Erythroxylum novogranatense Wikipedia | https://en.wikipedia.org/wiki/Erythroxylum_novogranatense
- ↑ https://erowid.org/psychoactives/faqs/faq_natural_high_australia.shtml#COCAINE
- ↑ Human monoamine oxidase enzyme inhibition by coffee and β-carbolines norharman and harman isolated from coffee | https://www.sciencedirect.com/science/article/abs/pii/S0024320505007514
- ↑ Terpenoids, alkaloids and coumarins from Boronia inornata and Boronia gracilipes https://www.sciencedirect.com/science/article/abs/pii/003194229400567D
- ↑ Terpenoids, alkaloids and coumarins from Boronia inornata and Boronia gracilipes https://www.sciencedirect.com/science/article/abs/pii/003194229400567D
- ↑ Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
- ↑ Lophophora diffusa (Croizat) Bravo | http://sacredcacti.com/blog/diffusa/
- ↑ [Estimation of mescaline and pellotine in Lophophora coulter plants (Cactaceae) by means of the oscillographic polarography]. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/647075
- ↑ Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
- ↑ Reported analysis of Lophophora williamsii | http://sacredcacti.com/blog/lophophora-williamsii-analysis/
- ↑ ALKALOID CONTENT OF REED CANARYGRASS (Phalaris arundinaceae L.) AS DETERMINED BY GAS-LIQUID CHROMATOGRAPHY | http://www.nrcresearchpress.com/doi/abs/10.4141/cjps90-132#.VxkL5_krJhE
- ↑ Safranal: From an Aromatic Natural Product to a Rewarding Pharmacological Agent | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637901/
- ↑ Benoni, H.; Dallakian, P.; Taraz, K. (1996). "Studies on the essential oil from guarana"
- ↑ https://erowid.org/library/books_online/pihkal/pihkal158.shtml Pikhal TMA-2
- ↑ Cinnamon: A Multifaceted Medicinal Plant | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003790/
- ↑ Cinnamon: A Multifaceted Medicinal Plant | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003790/
- ↑ Methyl Eugenol: Its Occurrence, Distribution, and Role in Nature, Especially in Relation to Insect Behavior and Pollination | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500151/
- ↑ Leaf Oils of the Genus Backhousia (Myrtaceae) | https://www.tandfonline.com/doi/abs/10.1080/10412905.1995.9698514
- ↑ Brophy, Joseph J.; Craven, Lyndley A.; Doran, John C. (2013). Melaleucas : their botany, essential oils and uses. Canberra: Australian Centre for International Agricultural Research. pp. 224–225.
- ↑ Australian Safrole Containing Plants (2007) | http://ausaf.awardspace.info/#Cinnamomum_baileyanum
- ↑ 141.0 141.1 141.2 Huhn, C., Pütz, M., Dahlenburg, R., & Pyell, U. (2005). Sassafras oils as precursors for the production of synthetic drugs: profiling via MEKC-UVD. In Beiträge zum XIV GTFCh-Symposium: Ausgewaehlte Aspekte der Forensischen Toxikologie (pp. 14-16). https://www.researchgate.net/profile/Michael_Puetz/publication/270219373_Sassafras_oils_as_precursors_for_the_production_of_synthetic_drugs_Profiling_via_MEKC-UVD/links/54a33d5d0cf256bf8bb0e18a.pdf
- ↑ Australian Safrole Containing Plants (2007) | http://ausaf.awardspace.info/#Cinnamomum_laubatii
- ↑ Cinnamomum oils (Including Cinnamon and Cassia | https://www.erowid.org/archive/rhodium/chemistry/3base/safrole.plants/fafopo/cinnamomum_oils.html
- ↑ Australian Safrole Containing Plants (2007) | http://ausaf.awardspace.info/#Cinnamomum_oliveri
- ↑ Cinnamomum oils (Including Cinnamon and Cassia | https://www.erowid.org/archive/rhodium/chemistry/3base/safrole.plants/fafopo/cinnamomum_oils.html
- ↑ Australian Journal of Chemistry. 1961;14:663-664
- ↑ Australian Safrole Containing Plants (2007) | http://ausaf.awardspace.info/#Eremophila_longifolia
- ↑ Rocha S.F.R. and Lin Chau Ming. 1999. Piper hispidinervum: A Sustainable source of safrole. p. 479–481. In: J. Janick (ed.), Perspectives on new crops and new uses. ASHS Press, Alexandria, VA.
- ↑ Piper hispidinervum https://erowid.org/archive/rhodium/chemistry/3base/safrole.plants/piper_hispidinervum.html Erowid
- ↑ https://en.wikipedia.org/wiki/Black_pepper#Phytochemicals,_folk_medicine_and_research
- ↑ https://books.google.com.au/books?id=-tg7R4hU8hkC&pg=PA395&redir_esc=y&hl=en#v=onepage&q&f=false
- ↑ Australian Safrole Containing Plants (2007) | http://ausaf.awardspace.info/#Zieria_Rutaceae/
- ↑ Phytochemical study of Pilosocereus pachycladus https://www.sciencedirect.com/science/article/pii/S0102695X17301795
- ↑ 154.0 154.1 154.2 154.3 Boyce, Greg R.; Gluck-Thaler, Emile; Slot, Jason C.; Stajich, Jason E.; Davis, William J.; James, Tim Y.; Cooley, John R.; Panaccione, Daniel G.; Eilenberg, Jørgen; De Fine Licht, Henrik H.; Macias, Angie M.; Berger, Matthew C.; Wickert, Kristen L.; Stauder, Cameron M.; Spahr, Ellie J.; Maust, Matthew D.; Metheny, Amy M.; Simon, Chris; Kritsky, Gene; Hodge, Kathie T.; Humber, Richard A.; Gullion, Terry; Short, Dylan P.G.; Kijimoto, Teiya; Mozgai, Dan; Arguedas, Nidia; Kasson, Matt T. (2019). "Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying cicada pathogens". Fungal Ecology. 41: 147–164. doi:10.1016/j.funeco.2019.06.002. ISSN 1754-5048.
- ↑ (2R), (1'R) and (2R), (1'S)-2-amino-3-(1,2-dicarboxyethylthio)propanoic acids from Amanita pantherina. Antagonists of N-methyl-D-aspartic acid (NMDA) receptors. | http://www.ncbi.nlm.nih.gov/pubmed/8477498
- ↑ Barker, S. A., McIlhenny, E. H., & Strassman, R. (2012). A critical review of reports of endogenous psychedelic N, N-dimethyltryptamines in humans: 1955-2010. Drug Testing and Analysis, 4(7-8), 617–635. doi:10.1002/dta.422 | https://doi.org/10.1002/dta.422
- ↑ 157.0 157.1 157.2 157.3 157.4 157.5 157.6 5-Hydroxytryptamine and Related Indolealkylamines. Berlin: Springer Berlin. 2013. ISBN 978-3642854699.
- ↑ Fruchart-Gaillard C, Mourier G, Marquer C, Stura E, Birdsall NJ, Servent D (December 2008). "Different interactions between MT7 toxin and the human muscarinic M1 receptor in its free and N-methylscopolamine-occupied states". Mol. Pharmacol. 74 (6): 1554–63. doi:10.1124/mol.108.050773. PMID 18784346.
- ↑ 159.0 159.1 159.2 Atreya, S. K., Mahaffy, P. R., Niemann, H. B., Wong, M. H., & Owen, T. C. (2003). Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets. Planetary and Space Science, 51(2), 105-112. https://doi.org/10.1016/S0032-0633(02)00144-7
- ↑ Zuckerman, B., Turner, B. E., Johnson, D. R., Clark, F. O., Lovas, F. J., Fourikis, N., ... & Gottlieb, C. A. (1975). Detection of interstellar trans-ethyl alcohol. The Astrophysical Journal, 196, L99-L102. https://doi.org/10.1086/181753
- ↑ 161.0 161.1 161.2 Armenta-Reséndiz, M., Ríos-Leal, E., Rivera-García, M. T., López-Rubalcava, C., & Cruz, S. L. (2019). Structure-activity study of acute neurobehavioral effects of cyclohexane, benzene, m-xylene, and toluene in rats. Toxicology and applied pharmacology, 376, 38-45. https://doi.org/10.1016/j.taap.2019.05.016
- ↑ Cernicharo, J., Heras, A. M., Tielens, A. G. G. M., Pardo, J. R., Herpin, F., Guélin, M., & Waters, L. B. F. M. (2001). Infrared space observatory's discovery of C4H2, C6H2, and benzene in CRL 618. The Astrophysical Journal Letters, 546(2), L123. https://doi.org/10.1086/318871
- ↑ 163.0 163.1 163.2 163.3 Barceloux, D. G. (2012). Medical toxicology of drug abuse: synthesized chemicals and psychoactive plants. John Wiley & Sons. https://doi.org/10.1002/9781118105955
- ↑ Betz, A. L. (1981). Ethylene in IRC+ 10216. The Astrophysical Journal, 244, L103-L105. https://doi.org/10.1086/183490
- ↑ Marcelino, N., Cernicharo, J., Agúndez, M., Roueff, E., Gerin, M., Martín-Pintado, J., ... & Thum, C. (2007). Discovery of interstellar propylene (CH2CHCH3): Missing links in interstellar gas-phase chemistry. The Astrophysical Journal Letters, 665(2), L127. https://doi.org/10.1086/521398