Naturally occurring sources

From PsychonautWiki
(Redirected from Naturally-occurring)
Jump to navigation Jump to search


Artwork from the cover of Hallucinogenic Plants (A Golden Guide)

Naturally occurring sources refers to psychoactive chemicals or their precursors that already exist in nature. This is in contrast to synthetic psychoactive compounds which are artificially produced or designed in laboratories. These natural chemicals can often be reproduced synthetically as well, though notably they appear in nature or through human cultivation.

Proposed origins

There are a variety of proposed reasons for the appearance of psychoactive substances in organisms including the following examples:

Selective breeding

Selective breeding is a method used by cultivators to add or remove traits from successive generations of organisms by breeding together those that have the preferred properties in hopes of developing a desirable genetic strain. This may have resulted in both the potency and appearance of psychoactive substance(s) which the cultivators wished to produce.[1]

Defence mechanism

Another proposed reason for the presence of psychoactive substances in nature is their use as a defence mechanism. Through natural selection an organism may develop a poison or toxin useful for fending off predators,[2] as can be seen in Latrodectus Spiders who's psychoactive Latrotoxin has no reward value, and instead poses a threat to others.

Reward symbiosis

It is also possible that co-evolution encouraged psychoactive organisms to appear as a means of propagation. That is; in the same way sweet fruits were naturally selected by animals spreading their contained seeds, so were psychoactive flora that posed some benefit to the animals.[3]

Genetic similarity

An incidental cause of the prevalence of these substances is the shared genetic origins of the organisms. Given that they share a great deal of genetic code it is reasonable to assume that this may have been a factor in producing chemicals similar enough to neurotransmitters so as to activate receptor sites. For example many psychoactive chemicals are biosynthesized from amino acids such as tryptophan, while in humans this amino acid is used to make serotonin. The result is that some of the tryptamines in nature are serotonergic agonists when consumed.

Historical significance

The use of psychoactive substances is deeply rooted in human culture and dates back to pre-history. Early societies often incorporated these organisms into their traditions in medicine, spirituality, or recreation, such as the use of soma in the origins of Hinduism, and many of these uses continue into the modern day. Some common examples of this are the use of wine containing Ethanol in Christian communion, and Ayahuasca among indigenous peoples of the Amazon.

Many of these organisms have been instrumental to the progress of various scientific fields, such as Biology, Medicine, Psychonautics, and continue to reveal their importance with their involvement in major discoveries, such as the discovery of cannabinoid receptors[4] preceding our knowledge of endocannabinoids.[5]

Precluding endogenous chemicals, many of these organisms served as humanities only means of altering neurochemistry until the advent of synthetic psychoactives during the modern age. They have been at the forefront of major historical developments, such as pharmacotherapy, the funding of organized crime, the psychedelic era of the 60's, and the current "War on Drugs".

Examples

Below is an index of articles regarding natural sources of psychoactive substances. Other than inanimate sources they are categorized by kingdom of organism with sections for each applicable class of psychoactivity, sub-sections are given to active constituents, and finally the taxonomy and common name. Names may appear more than once if they contain a variety of substances, or their active substance has a variety of effects. Please note the quantity of substance obtained through an organism is not always safe and/or effective at common levels of consumption, but they are here included for sake of completeness. In addition some of the organisms are toxic or dangerous and thus proper research and preparation is recommended before attempting to personally investigate their activity.

Botanical sources
Leaf.svg

Farming techniques
Plant growth icon.svg

Datasheets
File-text-o.svg

Botanical sources (Unknown)
Leaf.svg

Mycological sources
Mushroom.png

Farming techniques
Plant growth icon.svg

Datasheets
File-text-o.svg

Zoological sources
Wipp-Frog-silhouette.svg

These animals produce venom used for self-defense against predators. Invertebrates like insects deliver stings, or bites, whilst vertebrates like frogs and toads are "milked" for secretion that are either smoked (eg. Colorado River Toad) or burned into the skin (eg. kambo).

Farming techniques
Plant growth icon.svg

Datasheets
File-text-o.svg

Inanimate sources
Atom.png

Datasheets
File-text-o.svg

External links

References

  1. ARTIFICIAL SELECTION: A POWERFUL TOOL FOR ECOLOGISTS | http://onlinelibrary.wiley.com/doi/10.1890/0012-9658(2003)084%5B1650:ASAPTF%5D2.0.CO;2/abstract
  2. Nicotine's Defensive Function in Nature | http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0020217
  3. Evolution And Addiction | http://onlinelibrary.wiley.com/doi/10.1046/j.1360-0443.2002.00086.x/abstract
  4. Determination and characterization of a cannabinoid receptor in rat brain | http://molpharm.aspetjournals.org/content/34/5/605.long
  5. The Discovery of the Endocannabinoid System | http://www.beyondthc.com/wp-content/uploads/2012/07/eCBSystemLee.pdf
  6. Studies on the alkaloid composition of the Hawaiian Baby Woodrose Argyreia nervosa, a common legal high | http://www.fsijournal.org/article/S0379-0738(15)00074-2/abstract
  7. Chao JM, Der Marderosian AH (1973). "Ergoline alkaloidal constituents of Hawaiian baby wood rose, Argyreia nervosa (Burmf) Bojer". J. Pharm. Sci. 62 (4): 588–91. doi:10.1002/jps.2600620409. 
  8. Argyreia osyrensis Wikipedia |
  9. Stictocardia queenslandica Wikipedia
  10. Charles Savage, Willis W. Harman and James Fadiman, Ipomoea purpurea: A Naturally Occurring Psychedelic
  11. The Pharmacological and Epidemiological Aspects of Adolescent Drug Dependance pg 79 | https://books.google.ca/books?id=CQclBQAAQBAJ&pg=PA80&lpg=PA80&dq=turbina+corymbosa+alkaloid+content&source=bl&ots=RrOmUa544R&sig=lglxyvKtI-LOxmM0Bqu8GXhqWQY&hl=en&sa=X&ved=0ahUKEwjCg_rakKDMAhVjuIMKHZWTBxoQ6AEIZjAJ#v=onepage&q=ipomoea%20violacea&f=false
  12. "Show Plant". phytochem.nal.usda.gov. 
  13. "Show Plant". phytochem.nal.usda.gov. 
  14. The Pharmacological and Epidemiological Aspects of Adolescent Drug Dependance pg 80 | https://books.google.ca/books?id=CQclBQAAQBAJ&pg=PA80&lpg=PA80&dq=turbina+corymbosa+alkaloid+content&source=bl&ots=RrOmUa544R&sig=lglxyvKtI-LOxmM0Bqu8GXhqWQY&hl=en&sa=X&ved=0ahUKEwjCg_rakKDMAhVjuIMKHZWTBxoQ6AEIZjAJ#v=onepage&q=turbina%20corymbosa%20alkaloid%20content&f=false
  15. "Ololiuqui (Rivea corymbosa) im GIFTPFLANZEN.COMpendium - giftpflanzen.com". www.giftpflanzen.com. Retrieved 2008-04-18. 
  16. 16.0 16.1 16.2 16.3 16.4 16.5 16.6 New mescaline concentrations from 14 taxa/cultivars of Echinopsis spp. (Cactaceae) (“San Pedro”) and their relevance to shamanic practice | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.668.3565&rep=rep1&type=pdf
  17. 17.0 17.1 17.2 17.3 Alkaloid content in relation to ethnobotanical use of Trichocereus pachanoi and related taxa | http://gradworks.umi.com/14/78/1478388.html
  18. Cactus alkaloids. XXXVI. Mescaline and related compounds from Trichocereus peruvianus. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/600028
  19. Cactus Alkaloids. I. Trichocereus terscheckii (Parmentier) Britton and Rose | http://pubs.acs.org/doi/abs/10.1021/ja01148a097
  20. Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
  21. Lophophora diffusa (Croizat) Bravo | http://sacredcacti.com/blog/diffusa/
  22. [Estimation of mescaline and pellotine in Lophophora coulter plants (Cactaceae) by means of the oscillographic polarography]. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/647075
  23. Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
  24. Lophophora diffusa (Croizat) Bravo | http://sacredcacti.com/blog/diffusa/
  25. Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
  26. [Estimation of mescaline and pellotine in Lophophora coulter plants (Cactaceae) by means of the oscillographic polarography]. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/647075
  27. Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
  28. [Estimation of mescaline and pellotine in Lophophora coulter plants (Cactaceae) by means of the oscillographic polarography]. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/647075
  29. Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
  30. Reported analysis of Lophophora williamsii | http://sacredcacti.com/blog/lophophora-williamsii-analysis/
  31. Arundo donax mentioned in "DMT is Everywhere" | https://www.erowid.org/plants/arundo_donax/arundo_donax_info2.shtml
  32. Phalaris FAQ | https://www.erowid.org/plants/phalaris/phalaris_faq.shtml
  33. Bufotenin | https://wiki.dmt-nexus.me/Bufotenin#Phalaris_spp.
  34. Arundo donax mentioned in "DMT is Everywhere" | https://www.erowid.org/plants/arundo_donax/arundo_donax_info2.shtml
  35. Pharmacotheon page 246 | https://books.google.ca/books?id=VMjwAAAAMAAJ&focus=searchwithinvolume&q=delosperma
  36. Phalaris FAQ | https://www.erowid.org/plants/phalaris/phalaris_faq.shtml
  37. Tryptamine Carriers FAQ | http://deoxy.org/trypfaq.htm#phalaris
  38. ALKALOID CONTENT OF REED CANARYGRASS (Phalaris arundinaceae L.) AS DETERMINED BY GAS-LIQUID CHROMATOGRAPHY | http://www.nrcresearchpress.com/doi/abs/10.4141/cjps90-132#.VxkL5_krJhE
  39. Arundo donax mentioned in "DMT is Everywhere" | https://www.erowid.org/plants/arundo_donax/arundo_donax_info2.shtml
  40. Pharmacotheon page 246 | https://books.google.ca/books?id=VMjwAAAAMAAJ&focus=searchwithinvolume&q=delosperma
  41. Chemotaxonomie der Pflanzen: Band XIb-1: Leguminosae Teil 2: Caesalpinioideae und Mimosoideae | https://books.google.ca/books?id=bUV8C6iLFkEC&q=199#v=snippet&q=199&f=false
  42. Pharmahuasca, Anahuasca and Vinho da Jurema: Human Pharmacology of Oral DMT Plus Harmine | http://web.archive.org/web/20120124034100/http://www.santodaime.it/Library/NATURALSCIENCES/ott98a_english.htm
  43. Tryptamine Carriers FAQ | http://deoxy.org/trypfaq.htm#phalaris
  44. Phalaris FAQ | https://www.erowid.org/plants/phalaris/phalaris_faq.shtml
  45. Pharmacotheon page 246 | https://books.google.ca/books?id=VMjwAAAAMAAJ&focus=searchwithinvolume&q=phragmites+australis
  46. Psychotria viridis DMT Contents and Dosages | https://www.erowid.org/plants/psychotria/psychotria_info1.shtml
  47. Shulgin, A. & Shulgin, A. 1997. TIHKAL. Transform Press, California.
  48. List of psychoactive acacias wikipedia | https://en.wikipedia.org/wiki/List_of_Acacia_species_known_to_contain_psychoactive_alkaloids
  49. Acacia acuminata Wikipedia | https://en.wikipedia.org/wiki/Acacia_acuminata
  50. Acacia acuminata dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_acuminata
  51. Acacia baileyana Wikipedia | https://en.wikipedia.org/wiki/Acacia_baileyana
  52. Acacia baileyana dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_baileyana
  53. Acacia burkittii wikipedia | https://en.wikipedia.org/wiki/Acacia_burkittii
  54. Acacia burkitii dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_burkittii
  55. Acacia confusa Wikipedia | https://en.wikipedia.org/wiki/Acacia_confusa
  56. Acacia confusa dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_confusa
  57. Acacia courtii DMT-Nexus| https://wiki.dmt-nexus.me/Acacia_courtii
  58. Acacia concurrens Wikipedia | https://en.wikipedia.org/wiki/Acacia_concurrens
  59. Acacia floribunda Wikipedia | https://en.wikipedia.org/wiki/Acacia_floribunda
  60. Acacia floribunda dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_floribunda
  61. Acacia jibberdingensis wikipedia | https://en.wikipedia.org/wiki/Acacia_jibberdingensis
  62. Acacia longifolia Wikipedia | https://en.wikipedia.org/wiki/Acacia_longifolia
  63. Acacia longifolia dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_longifolia
  64. Acacia maidenii Wikipedia | https://en.wikipedia.org/wiki/Acacia_maidenii
  65. Acacia maidenii dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_maidenii
  66. Acacia neurophylla wikipedia | https://en.wikipedia.org/wiki/Acacia_neurophylla
  67. Acacia obtusifolia Wikipedia | https://en.wikipedia.org/wiki/Acacia_obtusifolia
  68. Acacia obtusifolia dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_obtusifolia
  69. Acacia phlebophylla Wikipedia | https://en.wikipedia.org/wiki/Acacia_phlebophylla
  70. Acacia phlebophylla dmt-nexus wiki | https://wiki.dmt-nexus.me/Acacia_phlebophylla
  71. Acacia prominens Wikipedia | https://en.wikipedia.org/wiki/Acacia_prominens
  72. Acacia simplex Wikipedia | https://en.wikipedia.org/wiki/Acacia_simplex
  73. The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
  74. IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
  75. Extraction Studies of Tabernanthe Iboga and Voacanga Africana | http://www.tandfonline.com/doi/abs/10.1080/1057563029001/4881#.Vxu8Y_krJhE
  76. The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
  77. IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
  78. Extraction Studies of Tabernanthe Iboga and Voacanga Africana | http://www.tandfonline.com/doi/abs/10.1080/1057563029001/4881#.Vxu8Y_krJhE
  79. The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
  80. IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
  81. 81.0 81.1 Opioid activity of alkaloids extracted from Picralima nitida (fam. Apocynaceae). (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/9683021
  82. The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
  83. IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
  84. Extraction Studies of Tabernanthe Iboga and Voacanga Africana | http://www.tandfonline.com/doi/abs/10.1080/1057563029001/4881#.Vxu8Y_krJhE
  85. The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
  86. IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
  87. Extraction Studies of Tabernanthe Iboga and Voacanga Africana | http://www.tandfonline.com/doi/abs/10.1080/1057563029001/4881#.Vxu8Y_krJhE
  88. The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
  89. IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
  90. Nepetalactone: a new opioid analgesic from Nepeta caesarea Boiss. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/9720633
  91. Structure and stereochemistry 4a.beta.,7.alpha.,7a.beta.-nepetalactone from Nepeta mussini and its relationship to the 4a.alpha.,7.alpha.,7a.alpha.- and 4a.alpha.,7.alpha.,7a.beta.-nepetalactones from N. cataria | http://pubs.acs.org/doi/abs/10.1021/jo01307a016
  92. Salvia divinorum drug profile| http://www.emcdda.europa.eu/publications/drug-profiles/salvia
  93. Salvia Recognita drug profile | https://www.ncbi.nlm.nih.gov/m/pubmed/28722248/
  94. Salvia Glutinosa drug profile | https://www.ncbi.nlm.nih.gov/m/pubmed/28722248/
  95. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532008000500021 | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532008000500021
  96. The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
  97. IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
  98. Extraction Studies of Tabernanthe Iboga and Voacanga Africana | http://www.tandfonline.com/doi/abs/10.1080/1057563029001/4881#.Vxu8Y_krJhE
  99. The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
  100. IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
  101. Extraction Studies of Tabernanthe Iboga and Voacanga Africana | http://www.tandfonline.com/doi/abs/10.1080/1057563029001/4881#.Vxu8Y_krJhE
  102. The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382526/
  103. IBOGAINE: A REVIEW | http://www.iceers.org/docs/science/iboga/Ibogaine%20Proceedings/ch01_Review_Alper.pdf
  104. Jansen, S. A., Kleerekooper, I., Hofman, Z. L., Kappen, I. F., Stary-Weinzinger, A., & van der Heyden, M. A. (2012). Grayanotoxin Poisoning:‘Mad Honey Disease’ and Beyond. Cardiovascular Toxicology, 12(3), 208-215. https://doi.org/10.1007/s12012-012-9162-2
  105. Pomeroy, A. R., & Raper, C. (1971). Pyrrolizidine alkaloids: actions on muscarinic receptors in the guinea-pig ileum. British journal of pharmacology, 41(4), 683. https://doi.org/10.1111/j.1476-5381.1971.tb07076.x
  106. 106.0 106.1 106.2 106.3 106.4 Aronson, J. K. (Ed.). (2015). Meyler's side effects of drugs: the international encyclopedia of adverse drug reactions and interactions. Elsevier.
  107. Duboisia hopwoodii Wikipedia | https://en.wikipedia.org/wiki/Duboisia_hopwoodii
  108. |Duboisia leichhardtii Wikipedia | https://en.wikipedia.org/wiki/Duboisia
  109. |Duboisia myoporoides Wikipedia | https://en.wikipedia.org/wiki/Duboisia_myoporoides
  110. Erythroxylum ecarinatum wikipedia | https://en.wikipedia.org/wiki/Erythroxylum_ecarinatum
  111. Erythroxylum ecarinatum Web Archive | https://web.archive.org/web/20070926234938/http://users.cyberone.com.au/bwalters/rareplants/erythroxylum_ecarinatum.htm
  112. Erythroxylum vaccinifolium wikipedia | https://en.wikipedia.org/wiki/Erythroxylum_vaccinifolium
  113. Opioid activity of alkaloids extracted from Picralima nitida (fam. Apocynaceae). (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/9683021
  114. Opioid activity of alkaloids extracted from Picralima nitida (fam. Apocynaceae). (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/9683021
  115. Nepetalactone: a new opioid analgesic from Nepeta caesarea Boiss. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/9720633
  116. Structure and stereochemistry 4a.beta.,7.alpha.,7a.beta.-nepetalactone from Nepeta mussini and its relationship to the 4a.alpha.,7.alpha.,7a.alpha.- and 4a.alpha.,7.alpha.,7a.beta.-nepetalactones from N. cataria | http://pubs.acs.org/doi/abs/10.1021/jo01307a016
  117. Identification of the putative binding pocket of valerenic acid on GABAA receptors using docking studies and site-directed mutagenesis. (PubMed.gov / NCBI) | https://www.ncbi.nlm.nih.gov/pubmed/26375408
  118. Erythroxylum coca Wikipedia | https://en.wikipedia.org/wiki/Erythroxylum_coca
  119. Erythroxylum novogranatense Wikipedia | https://en.wikipedia.org/wiki/Erythroxylum_novogranatense
  120. Human monoamine oxidase enzyme inhibition by coffee and β-carbolines norharman and harman isolated from coffee | https://www.sciencedirect.com/science/article/abs/pii/S0024320505007514
  121. Terpenoids, alkaloids and coumarins from Boronia inornata and Boronia gracilipes https://www.sciencedirect.com/science/article/abs/pii/003194229400567D
  122. Terpenoids, alkaloids and coumarins from Boronia inornata and Boronia gracilipes https://www.sciencedirect.com/science/article/abs/pii/003194229400567D
  123. Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
  124. Lophophora diffusa (Croizat) Bravo | http://sacredcacti.com/blog/diffusa/
  125. [Estimation of mescaline and pellotine in Lophophora coulter plants (Cactaceae) by means of the oscillographic polarography]. (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/647075
  126. Lophophora | https://www.erowid.org/plants/cacti/cacti_guide/cacti_guide_lophopho.shtml
  127. Reported analysis of Lophophora williamsii | http://sacredcacti.com/blog/lophophora-williamsii-analysis/
  128. ALKALOID CONTENT OF REED CANARYGRASS (Phalaris arundinaceae L.) AS DETERMINED BY GAS-LIQUID CHROMATOGRAPHY | http://www.nrcresearchpress.com/doi/abs/10.4141/cjps90-132#.VxkL5_krJhE
  129. Safranal: From an Aromatic Natural Product to a Rewarding Pharmacological Agent | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637901/
  130. Benoni, H.; Dallakian, P.; Taraz, K. (1996). "Studies on the essential oil from guarana"
  131. https://erowid.org/library/books_online/pihkal/pihkal158.shtml Pikhal TMA-2
  132. Cinnamon: A Multifaceted Medicinal Plant | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003790/
  133. Cinnamon: A Multifaceted Medicinal Plant | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003790/
  134. Methyl Eugenol: Its Occurrence, Distribution, and Role in Nature, Especially in Relation to Insect Behavior and Pollination | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500151/
  135. Leaf Oils of the Genus Backhousia (Myrtaceae) | https://www.tandfonline.com/doi/abs/10.1080/10412905.1995.9698514
  136. Australian Safrole Containing Plants (2007) | http://ausaf.awardspace.info/#Cinnamomum_baileyanum
  137. 137.0 137.1 137.2 Huhn, C., Pütz, M., Dahlenburg, R., & Pyell, U. (2005). Sassafras oils as precursors for the production of synthetic drugs: profiling via MEKC-UVD. In Beiträge zum XIV GTFCh-Symposium: Ausgewaehlte Aspekte der Forensischen Toxikologie (pp. 14-16). https://www.researchgate.net/profile/Michael_Puetz/publication/270219373_Sassafras_oils_as_precursors_for_the_production_of_synthetic_drugs_Profiling_via_MEKC-UVD/links/54a33d5d0cf256bf8bb0e18a.pdf
  138. Australian Safrole Containing Plants (2007) | http://ausaf.awardspace.info/#Cinnamomum_laubatii
  139. Cinnamomum oils (Including Cinnamon and Cassia | https://www.erowid.org/archive/rhodium/chemistry/3base/safrole.plants/fafopo/cinnamomum_oils.html
  140. Australian Safrole Containing Plants (2007) | http://ausaf.awardspace.info/#Cinnamomum_oliveri
  141. Cinnamomum oils (Including Cinnamon and Cassia | https://www.erowid.org/archive/rhodium/chemistry/3base/safrole.plants/fafopo/cinnamomum_oils.html
  142. Australian Journal of Chemistry. 1961;14:663-664
  143. Australian Safrole Containing Plants (2007) | http://ausaf.awardspace.info/#Eremophila_longifolia
  144. Rocha S.F.R. and Lin Chau Ming. 1999. Piper hispidinervum: A Sustainable source of safrole. p. 479–481. In: J. Janick (ed.), Perspectives on new crops and new uses. ASHS Press, Alexandria, VA.
  145. Piper hispidinervum https://erowid.org/archive/rhodium/chemistry/3base/safrole.plants/piper_hispidinervum.html Erowid
  146. https://en.wikipedia.org/wiki/Black_pepper#Phytochemicals,_folk_medicine_and_research
  147. https://books.google.com.au/books?id=-tg7R4hU8hkC&pg=PA395&redir_esc=y&hl=en#v=onepage&q&f=false
  148. Australian Safrole Containing Plants (2007) | http://ausaf.awardspace.info/#Zieria_Rutaceae/
  149. Phytochemical study of Pilosocereus pachycladus https://www.sciencedirect.com/science/article/pii/S0102695X17301795
  150. (2R), (1'R) and (2R), (1'S)-2-amino-3-(1,2-dicarboxyethylthio)propanoic acids from Amanita pantherina. Antagonists of N-methyl-D-aspartic acid (NMDA) receptors. | http://www.ncbi.nlm.nih.gov/pubmed/8477498
  151. 152.0 152.1 152.2 Atreya, S. K., Mahaffy, P. R., Niemann, H. B., Wong, M. H., & Owen, T. C. (2003). Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets. Planetary and Space Science, 51(2), 105-112. https://doi.org/10.1016/S0032-0633(02)00144-7
  152. Zuckerman, B., Turner, B. E., Johnson, D. R., Clark, F. O., Lovas, F. J., Fourikis, N., ... & Gottlieb, C. A. (1975). Detection of interstellar trans-ethyl alcohol. The Astrophysical Journal, 196, L99-L102. https://doi.org/10.1086/181753
  153. 154.0 154.1 154.2 Armenta-Reséndiz, M., Ríos-Leal, E., Rivera-García, M. T., López-Rubalcava, C., & Cruz, S. L. (2019). Structure-activity study of acute neurobehavioral effects of cyclohexane, benzene, m-xylene, and toluene in rats. Toxicology and applied pharmacology, 376, 38-45. https://doi.org/10.1016/j.taap.2019.05.016
  154. Cernicharo, J., Heras, A. M., Tielens, A. G. G. M., Pardo, J. R., Herpin, F., Guélin, M., & Waters, L. B. F. M. (2001). Infrared space observatory's discovery of C4H2, C6H2, and benzene in CRL 618. The Astrophysical Journal Letters, 546(2), L123. https://doi.org/10.1086/318871
  155. 156.0 156.1 156.2 156.3 Barceloux, D. G. (2012). Medical toxicology of drug abuse: synthesized chemicals and psychoactive plants. John Wiley & Sons. https://doi.org/10.1002/9781118105955
  156. Betz, A. L. (1981). Ethylene in IRC+ 10216. The Astrophysical Journal, 244, L103-L105. https://doi.org/10.1086/183490
  157. Marcelino, N., Cernicharo, J., Agúndez, M., Roueff, E., Gerin, M., Martín-Pintado, J., ... & Thum, C. (2007). Discovery of interstellar propylene (CH2CHCH3): Missing links in interstellar gas-phase chemistry. The Astrophysical Journal Letters, 665(2), L127. https://doi.org/10.1086/521398