Ephylone

From PsychonautWiki
(Redirected from Bk-EBDP)
Jump to navigation Jump to search

Skull and crossbones darktextred2.png

Ephylone has been linked to numerous overdoses and deaths.

It is strongly discouraged to use this substance in high doses, multiple times in a row, or in combination with other substances known to increase the risk of psychosis or serotonin syndrome. Please see this section for more details.

Summary sheet: Ephylone
Ephylone
N-ethyl-nor-pentylone.svg
Chemical Nomenclature
Common names Ephylone, bk-EBDP, βk-EBDP, bk-ethyl-K
Substitutive name N-Ethylpentylone
Systematic name 1-(2H-1,3-benzodioxol-5-yl)-2-(ethylamino)pentan-1-one
Class Membership
Psychoactive class Stimulant / Entactogen
Chemical class Cathinone / MDxx
Routes of Administration

WARNING: Always start with lower doses due to differences between individual body weight, tolerance, metabolism, and personal sensitivity. See responsible use section.



Oral
Dosage
Threshold 5 mg
Light 10 - 20 mg
Common 20 - 40 mg
Strong 40 - 80 mg
Heavy Ephylone may be fatal at heavy doses.
Duration
Total 4 - 8 hours
Onset 15 - 30 minutes
After effects 6 - 24 hours









DISCLAIMER: PW's dosage information is gathered from users and resources for educational purposes only. It is not a recommendation and should be verified with other sources for accuracy.

Interactions
Alcohol
DXM
MXE
MDMA
Cocaine
Stimulants
Array5x-NBOMe
Array5x-NBOH
Tramadol
MAOIs
Serotonin releasers
Selective serotonin re-uptake inhibitors
Serotonin-norepinephrine reuptake inhibitors
5-HTP


N-Ethylpentylone (also known as bk-EBDP, βk-EBDP, and ephylone) is a novel stimulant-entactogen substance of the cathinone class. Ephylone is chemically related to pentylone and belongs to a group of compounds known as the substituted cathinones. Little is known about its pharmacology, although it likely produces its effects by increasing levels of serotonin, dopamine, and norepinephrine in the brain.[1]

Ephylone was developed in the 1960s by Boehringer Ingelheim as a central nervous system stimulant,[1] although it never became marketed. Reports of recreational use first appeared in late 2015. Since then, its prevalence has steadily risen, particularly at dance music festivals where it appears as an adulterant or counterfeit for MDMA.[1] Ephylone has been linked to numerous hospitalizations and overdose deaths.[2]

User reports indicate that ephylone produces a mixture of classic stimulant and entactogenic effects resembling those of MDMA, methylone and cocaine. Typical effects include stimulation, disinhibition, increased libido, compulsive redosing, and euphoria. Unlike similar substances, however, ephylone is reported to be very long lasting when taken in larger doses. The significance of this is not known, although it may indicate that it has a different toxicity profile compared to other stimulants.

Ephylone is sold online as a research chemical alongside other synthetic cathinones like ethylone and dibutylone.[1] Due to the lack of research, it is highly advised to use harm reduction practices if using this substance.

History and culture

Synthetic cathinones were first synthesized in the late 1920s, starting with methcathinone and mephedrone. However, they did not find medical use due to their side effects. In the early 2000s, synthetic cathinones began to be sold in "head" shops and online as designer drugs, also known as research chemicals and "legal highs".[3] Their quasi-legality and ability to substitute for traditional stimulants like cocaine or amphetamine made them popular in certain demographics. Due to a history of being falsely marketed as bath salt products, they are referred in the media as "bath salts."

The synthesis of ephylone was first described in a patent filed by Boehringer Ingelheim in 1969. It was described alongside the synthesis of other novel central nervous system stimulants including pentylone, butylone and dibutylone. However, its pharmacological properties were not tested and it was never marketed.

The emergence of ephylone on the recreational drug market was reported in drug seizures for the first time in 2016. According to 2017 DEA reports, ephylone was the number one reported synthetic cathinone accounting for 55%, 50% and 38% of cases reported for the first three quarters of 2017, respectively.[4]

Reports about the availability and effects of ephylone began to appear in forums such as bluelight.org or drugs-forum.com by mid-2015. A 2018 report issued by the drug testing organization Energy Control found evidence indicating increasing use of ephylone as a counterfeit or adulterant for MDMA.[5]

Chemistry

Ephylone, or N-ethylpentylone, is a synthetic substance belonging to a group known as substituted cathinones. Substituted cathinones are derivatives of the naturally occurring substance cathinone, which is one of the psychoactive principles in khat (Catha edullis). Cathinone is composed of a phenethylamine core with an alkyl group attached to the alpha carbon, and a ketone group attached to the beta carbon.

Ephylone is a structural analog of pentylone. Pentylone's chemical structure consists of a cathinone core substituted with a methylenedioxy ring at R3 and R4 of the phenyl ring, a propyl group at the alpha carbon, and a methyl group at the amino group. Ephylone has an identical structure with the exception of an N-ethyl alkyl substituting for the N-methyl moiety.

Pharmacology

Very little data exists on the human pharmacokinetics and pharmacodynamics of ethylone and other substituted cathinones. Like amphetamines, synthetic cathinones exert their stimulating and sympathomimetic effects via increasing synaptic concentration of catecholamines such as dopamine, serotonin and norepinephrine. These molecules are able to inhibit monoamine reuptake transporters producing a decreased clearance of the neurotransmitters from the synapse. Furthermore, they may cause release of biogenic amines from intracellular stores.[6]

Synthetic cathinones are generally less able than amphetamines to cross the blood–brain barrier because the beta-keto group causes an increase in polarity. Unlike other synthetic cathinones, pyrrolidine derivatives have a higher ability to cross the blood–brain barrier because the pyrrolidine ring confers a low polarity to these molecules. The studies on the metabolism of synthetic cathinones have shown that they are N-demethylated, the keto group is reduced to hydroxyl and ring alkyl groups are oxidised.[7]

Subjective effects

Metacogghjgjvghnition.png
This subjective effects section is a stub.

As such, it is still in progress and may contain incomplete or wrong information.

You can help by expanding or correcting it.

Compared to other stimulant-entactogens, ephylone is reported to be more stimulating than entactogenic. Entactogenic feelings are said to be weak compared to substances like MDMA, 6-APB or methylone. Ephylone is also described as less euphoric and satisfying than traditional entactogens. Reports suggest that the physical side effects increase disproportionately to the desirable effects, which may promote compulsive redosing.

Disclaimer: The effects listed below are taken from the subjective effect index, which is based on anecdotal reports and the personal experiences of PsychonautWiki contributors. As a result, they should be treated with a healthy degree of skepticism. It is worth noting that these effects will rarely (if ever) occur all at once, although higher doses will increase the chances of inducing a full range of effects. Likewise, adverse effects become much more likely on higher doses and may include serious injury or death.

Physical effects
Child.svg

Visual effects
Eye.svg

Cognitive effects
User.svg

After effects
Aftereffects (3).svg

Experience reports

Anecdotal reports which describe the effects of this compound within our experience index include:

Additional experience reports can be found here:

Toxicity and harm potential

Ambulance2.png

This toxicity and harm potential section is a stub.

As such, it may contain incomplete or even dangerously wrong information. You can help by expanding or correcting it.
We also recommend that you conduct independent research and use harm reduction practices when using this substance.

Ephylone is a research chemical with a very short history of human usage. Very little is known about its long-term health effects and the exact toxic dosage is unknown.

Numerous reports of hospitalizations and overdose deaths indicate that ephylone is extremely toxic at very high dosages.[8] The DEA claimed approximately 151 ephylone-related deaths occurred in the U.S. between 2014 and 2018.[9] Higher dosages of ephylone have been linked to serotonin syndrome, rhabdomyolysis, kidney injury, acidemia and other life-threatening symptoms.[10]

It is strongly advised to use harm reduction practices if using this substance.

Dependence and abuse potential

As with other stimulants, the chronic use of ephylone can be considered moderately addictive with a high potential for abuse. It is capable of causing psychological dependence among certain users. When addiction has developed, cravings and withdrawal effects will occur if one suddenly stops their use.

Tolerance to many of the effects of ephylone develops with prolonged and repeated use. This results in users having to administer increasingly large doses to achieve the same effects.

Dangerous interactions

Although many psychoactive substances are reasonably safe to use on their own, they can quickly become dangerous or even life-threatening when taken with other substances. The following lists some known dangerous combinations, but cannot be guaranteed to include all of them. Independent research should always be conducted to ensure that a combination of two or more substances is safe to consume. Some interactions listed have been sourced from TripSit.

  • MDMA - The neurotoxic effects of MDMA may be increased when combined with other amphetamines.
  • Cocaine - This combination may increase strain on the heart.
  • Stimulants - Ephylone can be potentially dangerous in combination with other stimulants as it can increase one's heart rate and blood pressure to dangerous levels.
  • 25x-NBOMe & 25x-NBOH - Members of the 25x family are highly stimulating and physically straining. Combinations with stimulants should be avoided due to the risk of excessive stimulation. This can result in panic attacks, thought loops, seizures, increased blood pressure, vasoconstriction, and heart failure in extreme cases.
  • Alcohol - Alcohol can be dangerous to combine with stimulants due to the risk of accidental over-intoxication. Stimulants mask the sedative effects of alcohol, which is the main factor people use to assess their degree of intoxication. Once the stimulant wears off, the depressant effects of alcohol are left unopposed, which can result in blackouts and respiratory depression. If combined, one should strictly limit themselves to only drinking a certain amount of alcohol per hour.
  • DXM - Combinations with DXM should be strictly avoided due to DXM's effects on serotonin and dopamine reuptake. This can lead to panic attacks, hypertensive crisis, or serotonin syndrome.
  • MXE - Combinations with MXE may dangerously elevate blood pressure and increase the risk of psychosis.
  • Tramadol - Tramadol lowers the seizure threshold.[11] Combinations with stimulants may further increase this risk.

Serotonin syndrome risk

Combinations with the following substances can cause dangerously high serotonin levels. Serotonin syndrome requires immediate medical attention and can be fatal if left untreated.

Legal status

Handcuffs-300px.png

This legality section is a stub.

As such, it may contain incomplete or wrong information. You can help by expanding it.

Ephylone is currently unscheduled in most parts of the world.

  • United States: On July 13, 2018, the DEA issued a temporary scheduling order to place ephylone in schedule I of the Controlled Substances Act (CSA).[13] This makes the production, sale, and possession of ephylone illegal.
  • Brazil: On September 7, 2018, all Cathinone analogues are controlled substances considered illegal to possess, use and distribute. This was made possible due to a blanket ban law appended to Portaria SVS/MS nº 344.[14]

See also

External links

Literature

References

  1. 1.0 1.1 1.2 1.3 Wood, M. R., Bernal, I., & Lalancette, R. A. (2017). The hydrochloride hydrates of pentylone and dibutylone and the hydrochloride salt of ephylone: the structures of three novel designer cathinones. Structural Chemistry, 28(5), 1369-1376. http://dx.doi.org/10.1007/s11224-017-0951-x
  2. Krotulski, A. J., Papsun, D. M., De Martinis, B. S., Mohr, A. L., & Logan, B. K. (2018). N-Ethyl Pentylone (Ephylone) Intoxications: Quantitative Confirmation and Metabolite Identification in Authentic Human Biological Specimens. Journal of Analytical Toxicology. https://doi.org/10.1093/jat/bky025
  3. Coppola, M., & Mondola, R. (2012). Synthetic cathinones: chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as “bath salts” or “plant food”. Toxicology letters, 211(2), 144-149. https://doi.org/10.1016/j.toxlet.2012.03.009
  4. Krotulski, A. J., Papsun, D. M., De Martinis, B. S., Mohr, A. L., & Logan, B. K. (2018). N-Ethyl Pentylone (Ephylone) Intoxications: Quantitative Confirmation and Metabolite Identification in Authentic Human Biological Specimens. Journal of analytical toxicology. https://doi.org/10.1093/jat/bky02
  5. Doctor X. (2018 May).Ecstasy and MDMA aldulterated with N-Ethyl-Pentylone. A brief report. Retrieved from https://energycontrol-international.org/ecstasy-mdma-aldulterated-with-n-ethyl-pentylone-report/
  6. Cozzi, N.V., Sievert, M.K., Shulgin, A.T., Jaco 3rd., P., Ruoho, A.E., 1999. Inhibition of plasma membrane monoamine transporters by beta-ketoamphetamines. Eur. J. Pharmacol. 381, 63–69.
  7. Meyer, M.R., Maurer, H.H., 2010. Metabolism of designer drugs of abuse: an updated review. Curr. Drug Metab. 11, 468–482
  8. Clinical Presentation, Autopsy Results and Toxicology Findings in an Acute Ephylone Fatality. (PubMed.gov / NCBI) | https://www.ncbi.nlm.nih.gov/pubmed/28137731
  9. https://www.federalregister.gov/documents/2018/06/13/2018-12669/schedules-of-controlled-substances-temporary-placement-of-n-ethylpentylone-in-schedule-i
  10. N-Ethyl Pentylone (Ephylone) Intoxications: Quantitative Confirmation and Metabolite Identification in Authentic Human Biological Specimens (ResearchGate) | https://www.researchgate.net/publication/324170663_N-Ethyl_Pentylone_Ephylone_Intoxications_Quantitative_Confirmation_and_Metabolite_Identification_in_Authentic_Human_Biological_Specimens
  11. Talaie, H., Panahandeh, R., Fayaznouri, M. R., Asadi, Z., & Abdollahi, M. (2009). Dose-independent occurrence of seizure with tramadol. Journal of Medical Toxicology, 5(2), 63-67. https://doi.org/10.1007/BF03161089
  12. Gillman, P. K. (2005). Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. British Journal of Anaesthesia, 95(4), 434-441. https://doi.org/10.1093/bja/aei210
  13. https://www.federalregister.gov/documents/2018/06/13/2018-12669/schedules-of-controlled-substances-temporary-placement-of-n-ethylpentylone-in-schedule-i
  14. New blanket ban on synthetic illegal drugs is approved (Portuguese) | http://portal.anvisa.gov.br/noticias/-/asset_publisher/FXrpx9qY7FbU/content/combate-a-drogas-ilicitas-sinteticas-fica-mais-facil/219201/pop_up?_101_INSTANCE_FXrpx9qY7FbU_viewMode=print&_101_INSTANCE_FXrpx9qY7FbU_languageId=pt_BR