Tyrosine

From PsychonautWiki
Jump to: navigation, search
Proofread.png

This article requires proofreading.

As such, it may contain incorrect grammar, spelling, or punctuation.

Summary sheet: Tyrosine
Tyrosine
Tyrosine.svg
Chemical Nomenclature
Common names Tyrosine, L-Tyrosine or 4-hydroxyphenylalanine
Systematic name L-Tyrosine
Class Membership
Psychoactive class Nootropic and stimulating compound
Chemical class Amino acid
Routes of Administration

WARNING: Always start with lower doses due to differences between individual body weight, tolerance, metabolism, and personal sensitivity. See responsible use section.



Oral
Dosage
Threshold 300 - 500 mg
Light 500 - 1000 mg
Common 1000 - 2000 mg
Strong 2000 - 3000 mg
Heavy 3000 mg +
Duration
Total 2 - 4 hours
Onset 30 - 90 minutes
Peak 1 - 3 hours
After effects 6 - 12 hours









DISCLAIMER: PW's dosage information is gathered from users and resources for educational purposes only. It is not a recommendation and should be verified with other sources for accuracy.

Tyrosine, L-Tyrosine or 4-hydroxyphenylalanine is a non-essential amino acid and a precursor to dopamine, adrenaline and norepinephrine which is naturally found within the body. As a supplement this compound is a psychoactive drug and nootropic with stimulant properties. It is also one of the 22 amino acids that are used by cells to synthesize proteins. This compound is abundant in many high-protein foods, such as chicken, turkey, fish, cottage cheese, cheese, yogurt, almonds, milk, avocados, bananas, peanuts, pumpkin seeds, sesame seeds and soy products.[1]

There is some evidence to suggest tyrosine supplementation can affect performance on working memory tasks under certain conditions, especially stress. Tyrosine may enhance convergent (double-task) thinking. In one study, tyrosine even seemed to reverse some of the detrimental effects of sleep deprivation on cognitive performance. However, if tyrosine increases working memory performance by elevating catecholamine levels, the effect could easily be short-lived. Some animal studies have shown dopamine levels quickly return to baseline.[citation needed]

Chemistry

Tyrosine is a non-essential phenylalanine-derived amino acid. Tyrosine's structure comprises a para-hydroxylated phenyl ring connected to a pentanoic acid group, which is a five member carbon chain with a carboxyl (C(=O)OH) group on the terminal carbon. This pentanoic acid chain is substituted at R2 with an amino group in levorotary orientation.

Pharmacology

This diagram represents the mechanism for tyrosine conversion into numerous catecholamines.

The effects of tyrosine as a supplement or psychoactive compound are due to it being a precursor to catecholamine neurotransmitters.[2] Supplemental L-Tyrosine is converted by the body into L-DOPA which is then decarboxylated into dopamine, which later turns into norepinephrine and is then finally converted to epinephrine. This means it effectively boosts the levels of these neurotransmitters in the brain, resulting in stimulating and euphoric effects. These three neurotransmitters are collectively referred to as "catecholamines."

The process of catecholamine synthesis within the body is limited to a localized substrate pool, meaning that the subjective effects of tyrosine can often reach an "upper-limit" at heavy dosages in which additional supplementation for the purposes of intensify one's stimulation becomes ineffective.[citation needed]

Subjective effects

The effects listed below are based upon the subjective effects index and personal experiences of PsychonautWiki contributors. These effects should be taken with a grain of salt and will rarely (if ever) occur all at once, but heavier doses will increase the chances of inducing a full range of effects. Likewise, adverse effects become much more likely on higher doses and may include serious injury or death.

In comparison to traditional stimulants such as amphetamine and methylphenidate, tyrosine can be described as more "natural" feeling, less jittery, and with fewer side effects and a milder come down or "crash." It is significantly less forced, with no distinct body high. It is also less euphoric and recreational but more functional.


Physical effects
Child.svg

After effects
Aftereffects (3).svg


Toxicity and harm potential

Tyrosine is physically safe, is not known to cause brain damage, and has an extremely low toxicity relative to dose. Similar to many other nootropic drugs, there are relatively few physical side effects associated with acute tyrosine exposure. Various studies have shown that in reasonable doses in a careful context, it presents no negative cognitive, psychiatric or toxic physical consequences of any sort. However, it is still strongly recommended that one use harm reduction practices when using this drug.

Tolerance and addiction potential

Tyrosine may potentially be mildly habit forming and the desire to use it may actually increase with use. This is because of its dopaminergic properties. However, in comparison to other more traditional stimulants such as amphetamine or methylphenidate, it is not nearly as addictive or compulsive.

Tolerance to the effects of tyrosine are quickly built after repeated and frequent usage. After that, it takes about 7 days for the tolerance to be reduced to half and 14 days to be back at baseline (in the absence of further consumption). Tyrosine presents cross-tolerance with other dopaminergic stimulants, meaning that after the consumption of tyrosine, most other stimulant compounds will have a reduced effect.

Dangerous interactions

Although many psychoactive substances are safe to use on their own, they can become dangerous or even life-threatening when taken with other substances. The list below contains some potentially dangerous combinations, but may not include all of them. Certain combinations may be safe in low doses but still increase the possibility of injury of death. Independent research should always be conducted to ensure that a combination of two or more substances is safe before consumption.

  • Stimulants - Tyrosine is stimulatory on its own. Therefore, it may theoretically interact with other stimulatory pharmaceuticals or supplements and cause dangerously high blood pressure or heartrate.
  • 25x-NBOMe/25x-NBOH - Members of the 25x family are highly stimulating and physically straining. Combinations with stimulants should be avoided due to the risk of excessive stimulation. This can result in panic attacks, thought loops, seizures, increased blood pressure, vasoconstriction, and heart failure in extreme cases.
  • Alcohol - Alcohol can be dangerous to combine with stimulants due to the risk of accidental over-intoxication. Stimulants mask the sedative effects of alcohol, which is the main factor people use to assess their degree of intoxication. Once the stimulant wears off, the depressant effects of alcohol are left unopposed, which can result in blackouts and respiratory depression. If combined, one should strictly limit themselves to only drinking a certain amount of alcohol per hour.
  • DXM - Combinations with DXM should be strictly avoided due to DXM's effects on serotonin and dopamine reuptake. This can lead to panic attacks, hypertensive crisis, or serotonin syndrome.
  • MXE - Combinations with MXE may dangerously elevate blood pressure and increase the risk of psychosis.
  • Tramadol - Tramadol lowers the seizure threshold.[11] Combinations with stimulants may further increase this risk.
  • MDMA - The neurotoxic effects of MDMA may be increased when combined with amphetamine and other stimulants.
  • MAOIs - This combination may increase the amount of neurotransmitters such as dopamine to dangerous or even fatal levels. Examples include syrian rue, banisteriopsis caapi, 2C-T-2, 2C-T-7, αMT, and some antidepressants.[12]
  • Cocaine - This combination may increase strain on the heart.

Legal issues

Handcuffs-300px.png

This legality section is a stub.

As such, it may contain incomplete or wrong information. You can help by expanding it.

Tyrosine is unscheduled across the world and is not known to be specifically illegal within any country.

  • United Kingdom - It is illegal to produce, supply, or import this drug under the Psychoactive Substance Act, which came into effect on May 26th, 2016.[13]

See also

External links

References

  1. Foods highest in Tyrosine | http://nutritiondata.self.com/foods-000087000000000000000.html
  2. Role of N-terminus of tyrosine hydroxylase in the biosynthesis of catecholamines (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/19396395
  3. https://www.webmd.com/vitamins/ai/ingredientmono-1037/tyrosine
  4. https://www.webmd.com/vitamins/ai/ingredientmono-1037/tyrosine
  5. NMDAR2B tyrosine phosphorylation regulates anxiety-like behavior and CRF expression in the amygdala | http://molecularbrain.biomedcentral.com/articles/10.1186/1756-6606-3-37
  6. Neonatal thyroxine treatment: changes in the number of corticotropin-releasing-factor (CRF) and neuropeptide Y (NPY) containing neurons and density of tyrosine hydroxylase positive fibers (TH) in the amygdala correlate with anxiety-related behavior of wistar rats (ScienceDirect) | http://www.sciencedirect.com/science/article/pii/S0306452203009126
  7. Protein tyrosine phosphatase alpha (PTPα) knockout mice show deficits in Morris water maze learning, decreased locomotor activity, and decreases in anxiety (ScienceDirect) | http://www.sciencedirect.com/science/article/pii/S0006899303028397
  8. Food for creativity: tyrosine promotes deep thinking (PubMed.gov / NCBI) | http://www.ncbi.nlm.nih.gov/pubmed/25257259
  9. Tyrosine improves working memory in a multitasking environment (PubMed.gov / NCBI) | https://www.ncbi.nlm.nih.gov/pubmed/10548261
  10. Tyrosine supplementation mitigates working memory decrements during cold exposure (PubMed.gov / NCBI) | https://www.ncbi.nlm.nih.gov/pubmed/17585971
  11. Talaie, H., Panahandeh, R., Fayaznouri, M. R., Asadi, Z., & Abdollahi, M. (2009). Dose-independent occurrence of seizure with tramadol. Journal of Medical Toxicology, 5(2), 63-67. https://doi.org/10.1007/BF03161089
  12. Gillman, P. K. (2005). Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. British Journal of Anaesthesia, 95(4), 434-441. https://doi.org/10.1093/bja/aei210
  13. Psychoactive Substances Act 2016 (Legislation.gov.uk) | http://www.legislation.gov.uk/ukpga/2016/2/contents/enacted