Lisdexamfetamine

From PsychonautWiki
(Redirected from Lisdexamfetamine dimesylate)
Jump to navigation Jump to search
Summary sheet: Lisdexamfetamine
Lisdexamfetamine
Lisdexamfetamine.svg
Chemical Nomenclature
Common names Lisdexamfetamine, Vyvanse, Elvanse
Substitutive name L-lysine-dextroamphetamine
Systematic name (2S)-2,6-Diamino-N-[(2S)-1-phenylpropan-2-yl]hexanamide
Class Membership
Psychoactive class Stimulant
Chemical class Amphetamine
Routes of Administration

WARNING: Always start with lower doses due to differences between individual body weight, tolerance, metabolism, and personal sensitivity. See responsible use section.



Oral
Dosage
Threshold 10 mg
Light 20 - 30 mg
Common 30 - 60 mg
Strong 60 - 90 mg
Heavy 90 mg +
Duration
Total 10 - 14 hours
Onset 60 - 90 minutes
Come up 30 - 60 minutes
Peak 3 - 5 hours
Offset 4 - 6 hours
After effects 2 - 6 hours









DISCLAIMER: PW's dosage information is gathered from users and resources for educational purposes only. It is not a recommendation and should be verified with other sources for accuracy.

Interactions
Alcohol
GHB
GBL
Opioids
Cocaine
Caffeine
Ketamine
Methoxetamine
Psychedelics
ArrayC-x
Cannabis
DMT
LSD
Mescaline
Psilocybin mushrooms
DXM
PCP
Array5x-NBOMe
ArrayC-T-x
5-MeO-xxT
DOx
Tramadol
aMT
MAOIs

Lisdexamfetamine (also known as lisdextroamphetamine, L-lysine-dextroamphetamine, or lisdexamfetamine dimesylate when under the brand names Elvanse and Vyvanse) is a prescription stimulant substance of the amphetamine class. Lisdextroamphetamine is a prodrug for d-amphetamine (dexamphetamine, or dextroamphetamine) which is a strong central nervous system (CNS) stimulant.

Lisdexamfetamine is approved for the treatment of attention deficit hyperactivity disorder (ADHD) and moderate to severe binge-eating disorder.[1] This means that outside of the oral route, its effects are independent of route of administration. Other routes of administration like insufflation, smoking or injection do not provide faster absorption or onset.

Subjective effects are essentially identical to that of dextroamphetamine except with a slower onset and a longer duration. These include stimulation, focus enhancement, motivation enhancement, and euphoria. As with amphetamine, it is sometimes sold and used illicitly as a study drug as well as a recreational substance.

Despite the marketed anti-abuse design, many users report that lisdexamfetamine is capable of producing dependence and addiction like other euphoric stimulants, particularly when it is taken above the recommended dosage. For this reason, it is highly advised to use harm reduction practices if using this substance.

History and culture

History icon.svg

This History and culture section is a stub.

As a result, it may contain incomplete or wrong information. You can help by expanding it.

Chemistry

Lisdexamphetamine consists of the dextro-rotary stereoisomer of amphetamine bonded to the essential amino acid L-Lysine. Amphetamine is comprised of a phenethylamine core featuring a phenyl ring bound to an amino (NH2) group through an ethyl chain with an additional methyl substitution at Rα. It can be referred to as a methyl homologue of phenethylamine as it has the same general formula, differing only in the addition of one methyl group.

Pharmacology

Lisdexamfetamine was developed with the goal of providing a long duration of effect that remains consistent throughout the day as well as reduced potential for abuse. The attachment of the amino acid lysine slows down the relative amount of dextroamphetamine that is released into the bloodstream. Because no free dextroamphetamine is present in lisdexamfetamine capsules, dextroamphetamine does not become available through mechanical manipulation, such as crushing or simple extraction. There is, therefore, no way to speed up absorption via alternate routes of administration, such as via insufflation, vaporization, or injection, making the drug theoretically less abusable.

Pharmacokinetics

As a prodrug, lisdexamfetamine is inactive in the form administered. Once ingested, it is enzymatically cleaved into two parts: L-lysine, a naturally occurring essential amino acid, and d-amphetamine, a central nervous system stimulant. Thus lisdexamfetamine functions as an extended release version of dexamphetamine. Because d-amphetamine needs to be liberated from lysine via contact with red blood cells, effects are independent of route of administration. Conversion of lisdexamfetamine into active d-amphetamine is enzymatically rate-limited, slowing down the time to achieve peak concentrations and decreasing its magnitude and dampening consequent striatal dopamine release, which is thought to be responsible for its euphoric and compulsive redosing effects.

Pharmacodymanics

Amphetamine is a full agonist of the trace amine-associated receptor 1 (TAAR1), which is a key regulator of common and trace brain monoamines such as dopamine, serotonin and noradrenaline.[2][3][4] The agonism of this set of receptors results in the release of increased concentrations of dopamine, serotonin and noradrenaline in the synaptic cleft. This leads to cognitive and physical stimulation within the user.

d-amphetamine's affinity for the TAAR1 receptor is twice that of l-amphetamine.[5] As a result, d-amphetamine produces three to four times as much central nervous system (CNS) stimulation as l-amphetamine. l-amphetamine, on the other hand, has stronger cardiovascular and peripheral effects.

Conversion rate

29.7% of the weight of lisdexamfetamine dimesylate (the usual prescribed form) is dexamphetamine: 30 mg lisdexamfetamine dimesylate is equivalent to 8.9 mg of dexamfetamine,[6][7]

The subjective experience will differ due to the slower, more steady release of active substance in the prodrug. An equivalent dose of dexamphetamine will have a higher peak plasma concentration and shorter duration.

Subjective effects

While the subjective effects are almost identical to that of amphetamine, lisdexamfetamine is significantly longer in its duration and more consistent in its intensity due to the slow release metabolism. Although this drug is rate-limited in its metabolism, sufficiently high doses are comparable to its instant release counterparts once the peak has been reached.

Peripheral effects (such as increased heart rate and higher body temperature) are reported to be less prominent than formulations that partly contain l-amphetamine, such as Adderall or the racemic amphetamine sulphate sold illicitly.

Disclaimer: The effects listed below are taken from the subjective effect index, which is based on anecdotal reports and the personal experiences of PsychonautWiki contributors. As a result, they should be treated with a healthy degree of skepticism. It is worth noting that these effects will rarely (if ever) occur all at once, although higher doses will increase the chances of inducing a full range of effects. Likewise, adverse effects become much more likely on higher doses and may include serious injury or death.

Physical effects
Child.svg

Visual effects
Eye.svg

Cognitive effects
User.svg

Auditory effects
Volume-up.svg

After effects
Aftereffects (3).svg

Experience reports

There are currently no anecdotal reports which describe the effects of this compound within our experience index. Additional experience reports can be found here:

Toxicity and Harm Potential

In rodents and primates, sufficiently high doses of amphetamine cause dopaminergic neurotoxicity, or damage to dopamine neurons, which is characterized by reduced transporter and receptor function. There is no evidence that amphetamine is directly neurotoxic in humans. However, large doses of amphetamine may cause indirect neurotoxicity as a result of increased oxidative stress from reactive oxygen species and autoxidation of dopamine.

It is strongly recommended that one use harm reduction practices when using this drug.

Tolerance and addiction potential

Addiction is a serious risk with heavy recreational amphetamine use but is unlikely to arise from typical long-term medical use at therapeutic doses. Lisdexamfetamine has been posited to have less potential for abuse and addiction than other pharmaceutical amphetamines due to the slower onset and the self-limiting metabolism, which puts a cap on the maximum peak plasma concentration and consequent dopamine release. Caution is nonetheless advised, as with other drugs in the amphetamine class.

Tolerance develops rapidly in amphetamine abuse (i.e. a recreational amphetamine overdose), so periods of extended use require increasingly larger doses of the drug in order to achieve the same effect. Repeated use of lisdexamfetamine will result in a gradual tolerance proportional to the dosage taken. Patients prescribed this drug often must increase their dosage after a time to maintain its efficacy.

Overdose

A severe amphetamine overdose can result in a stimulant psychosis that may involve a variety of symptoms, such as paranoia, delusions, and hallucinations, including the infamous Shadow people. A Cochrane Collaboration review on treatment for amphetamine, dextroamphetamine, and methamphetamine psychosis states that about 5–15% of users fail to recover completely. According to the same review, there is at least one trial that shows antipsychotic medications effectively resolve the symptoms of acute amphetamine psychosis. Psychosis very rarely arises from therapeutic use. The combination of prolonged use of high doses combined with sleep deprivation significantly increases the risk of stimulant psychosis.

Dangerous interactions

Although many psychoactive substances are reasonably safe to use on their own, they can quickly become dangerous or even life-threatening when taken with other substances. The following lists some known dangerous combinations, but cannot be guaranteed to include all of them. Independent research should always be conducted to ensure that a combination of two or more substances is safe to consume. Some interactions listed have been sourced from TripSit.

  • Alcohol - Drinking alcohol on stimulants is considered risky because it reduces the sedative effects of the alcohol that the body uses to gauge drunkenness. This often leads to excessive drinking with greatly reduced inhibitions, increasing the risk of liver damage and increased dehydration. The effects of stimulants will also allow one to drink past a point where they might normally pass out, increasing the risk. If you do decide to do this then you should set a limit of how much you will drink each hour and stick to it, bearing in mind that you will feel the alcohol and the stimulant less.
  • GHB/GBL - Stimulants increase respiration rate allowing a higher dose of sedatives. If the stimulant wears off first then the opiate may overcome the user and cause respiratory arrest.
  • Opioids - Stimulants increase respiration rate allowing a higher dose of opiates. If the stimulant wears off first then the opiate may overcome the patient and cause respiratory arrest.
  • Cocaine - This combination of stimulants will increase strain on the heart. It is not favored as cocaine has a mild blocking effect on dopamine releasers like amphetamine.
  • Caffeine - This combination of stimulants is generally considered unnecessary and may increase strain on the heart, as well as potentially causing anxiety and physical discomfort.
  • Tramadol - Tramadol and stimulants both increase the risk of seizures.
  • DXM - Both substances raise heart rate, in extreme cases, panic attacks caused by these substances have led to more serious heart issues.
  • Ketamine - No unexpected interactions. Likely to increase blood pressure but not an issue with sensible doses. Moving around on high doses of this combination may be ill advised due to risk of physical injury.
  • PCP - Increases risk of tachycardia, hypertension, and manic states.
  • Methoxetamine - Increases risk of tachycardia, hypertension, and manic states.
  • Psychedelics - Increases risk of anxiety, paranoia, and thought loops.
    • 25x-NBOMe - Amphetamines and NBOMes both provide considerable stimulation that when combined they can result in tachycardia, hypertension, vasoconstriction and, in extreme cases, heart failure. The anxiogenic and focusing effects of stimulants are also not good in combination with psychedelics as they can lead to unpleasant thought loops. NBOMes are known to cause seizures and stimulants can increase this risk.
    • 2C-x
      • 2C-T-x
    • 5-MeO-xxT
    • aMT
    • Cannabis - Stimulants increase anxiety levels and the risk of thought loops and paranoia which can lead to negative experiences.
    • DMT
    • DOx
    • LSD
    • Mescaline
    • Psilocybin mushrooms
  • MAOIs - MAO-B inhibitors can increase the potency and duration of phenethylamines unpredictably. MAO-A inhibitors with amphetamine can lead to hypertensive crises.

Legal status

Lisdexamphetamine is approved for medical use with a doctor's prescription, but in most countries it is illegal to sell or possess without a prescription.[citation needed]

  • Australia: It is a Schedule 8 drug.[citation needed]
  • Germany: Lisdexamfetamine is a controlled substance under Anlage III of the BtMG. It can only be prescribed on a narcotic prescription form.[8]
  • Canada: Lisdexamfetamine, as well as other amphetamines, is a Schedule I drug.[9]
  • Norway: Lisdexamfetamine is a Class A drug under particularly strict control.[10]
  • Sweden: Lisdexamfetamine is a Class II narcotic, with strict requirements for prescription. It has been placed under "utökad övervakning" (extended surveillance).[11]
  • Schengen Area: Lisdexamphetamine requires a special certificate while traveling within the Schengen Area, which covers most of Europe, but not the United Kingdom.[11]
  • United Kingdom: Lisdexamfetamine is a Class B scheduled drug.[citation needed]
  • United States: Lisdexamfetamine is a Schedule II controlled drug.[citation needed]

See also

External links

Literature

  • Galli, A., Poulsen, N.W., Sulzer, D., & Sonders, M.S. (2005). Mechanisms of neurotransmitter release by amphetamines: a review. Progress in Neurobiology, 75 6, 406-33. https://doi.org/10.1016/j.pneurobio.2005.04.003
  • Berman, S. M., Kuczenski, R., McCracken, J. T., & London, E. D. (2009). Potential adverse effects of amphetamine treatment on brain and behavior: a review. Molecular Psychiatry, 14(2), 123. https://doi.org/10.1038/mp.2008.90.

References