Citicoline

From PsychonautWiki
(Redirected from Citicholine)
Jump to: navigation, search
Citicoline
Molecular structure of citicline
Citicoline.svg
Chemical Nomenclature
Common names Citicoline
Substitutive name Cytidine diphosphate choline
Systematic name (2R,3S,4R,5R)-5-(4-amino-2-oxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-ylmethoxy-hydroxyphosphoryl 2-(trimethylazaniumyl)ethyl phosphate
Class Membership
Psychoactive class Nootropic
Chemical class Ammonium salt
Routes of Administration

WARNING: Always start with lower doses due to differences between individual body weight, tolerance, metabolism, and personal sensitivity. See responsible use section.



Oral
Dosage
Bioavailability 98%
Threshold 50 - 100 mg
Light 100 - 250 mg
Common 250 - 1000 mg
Strong 1000 - 2000 mg
Heavy 2000 mg +
Duration
Total 58 - 74 hours
Onset 1 - 2 hours
Come up 2 - 3 minutes
Peak 2.5 - 3.5 hours
Offset 30 - 40 hours
After effects 40 - 60 hours









DISCLAIMER: PW's dosage information is gathered from users and resources for educational purposes only. It is not a recommendation and should be verified with other sources for accuracy.

Summary sheet: Citicoline

Citicoline (CDP-choline, cytidine 5'-diphosphocholine) is a water soluble nutrient which serves as a precursor to both choline and cytidine within the brain (which later converts to uridine). To humans, choline is an essential nutrient as its role in reducing the risk of neural tube defects, fatty liver disease, and other pathologies have been documented.[1] CDP-choline is one of the three choline-containing phospholipids that can be orally supplemented (the other two being alpha-GPC and phosphatidylcholine).

This supplement is catered towards preventing or treating memory impairments associated with aging because both of the molecules it confers are neuroprotective and potentially enhance learning. This effect may also benefit younger populations as well. It appears to be more efficient than phosphatidylcholine (PC) itself in this role, in part due to also increasing PC synthesis in the brain.

The potency of this compound is somewhat comparable to that of alpha-GPC. One study has noted an increase in attention with low dose CDP-choline (which needs to be replicated), and CDP-choline may have roles as an anti-addictive compound against both cocaine and (preliminary evidence suggests) food as well.[2][3]

When taken as a supplement, this compound has nootropic effects. It is readily available and commonly sold for this purpose through the use of online supplement vendors.

Chemistry

Citicoline, or cytidine diphosphate-choline, is a naturally occurring substance found in human cell tissue and synthesized as a sodium salt as a supplement. Its chemical structure is comprised of a cytidine nucleoside attached to a choline group through a diphosphate bridge. Citicoline is a chemical intermediary in the biosynthesis of phosphatidylcholine, a major phospholipid in cell membranes.

The choline subcomponent of citicoline is comprised of a trimethyl ammonium salt with an additional ethanol group attached. In citicoline, the terminal alcohol group is incorporated into the phosphate bridge connecting the choline sub-group to cytidine. Cytidine is a nucleoside made of cytosine bonded to a ribose ring.

Pharmacology

CDP-choline breaks down into two key components, choline and cytidine. Choline and its metabolites are needed for three main physiological purposes: structural integrity and signaling roles for cell membranes as well as cholinergic neurotransmission (acetylcholine synthesis).[4] This process essentially allows acetylcholine to accumulate at higher levels than that which it otherwise would. As acetylcholine is involved in the function of memory, this could potentially account for its nootropic effects.

Cytidine is the second metabolite which is a critical step in the synthesis of uridine, which increases the efficiency of phosphatidylcholine. Uridine supplementation also appears to enhance dopamine output from activated neurons without significantly affecting basal levels of dopamine.[citation needed] This could account for its improvements in spatial short-term memory, recognition, recall, attention, and executive functions after prolonged supplementation.[citation needed]

Subjective effects

The effects listed below are based upon the subjective effects index and personal experiences of PsychonautWiki contributors. The listed effects should be taken with a grain of salt and will rarely (if ever) occur all at once, but heavier doses will increase the chances and are more likely to induce a full range of effects. Likewise, adverse effects become much more likely on higher doses and may include injury or death.

Physical effects

  • Appetite suppression[5]
  • Stimulation - The stimulation which citicoline presents can be considered as primarily subtle and less than that of caffeine.
  • Headaches
  • Pain relief - CDP-choline appears to have painkilling effects via the nicotinic acetylcholine receptors in a dosage-dependent manner.[6][7]
  • Body odor alteration - This may occur in some populations, especially those suffering from trimethylaminuria. Choline (a byproduct of CDP-choline) is a precursor to trimethylamine, which some people are not able to break down easily, often resulting in a fishy smell.[8]
  • Acuity enhancement - Citicoline may prevent and treat eye damage related to glaucoma.[9]

Cognitive effects

Toxicity and harm potential

Citicoline is non-addictive, is not known to cause brain damage, and has an extremely low toxicity relative to dose. Similar to many other nootropics substances, there are relatively few physical side effects associated with acute citicoline exposure. Various studies have shown that in reasonable doses in a careful context, it presents no negative cognitive, psychiatric or toxic physical consequences of any sort.

It is strongly recommended that one use harm reduction practices when using this substance.

Tolerance and addiction potential

Citicoline is not habit-forming and the desire to use it can actually decrease with use. It is most often self-regulating.

Citicoline does not seem to build up an immediate tolerance and becomes stronger with prolonged use due to its long half-life. It is not recommended to take citicoline for extended periods longer than two weeks.

Legal issues

Handcuffs-300px.png

This legality section is a stub.

As such, it may contain incomplete or wrong information. You can help by expanding it.

Literature

  • Mcglade, E., Locatelli, A., Hardy, J., Kamiya, T., Morita, M., Morishita, K., … Yurgelun-Todd, D. (2012). Improved Attentional Performance Following Citicoline Administration in Healthy Adult Women. Food and Nutrition Sciences, 336103(June), 769–773. https://doi.org/10.4236/fns.2012.36103
  • Parisi, V., Coppola, G., Centofanti, M., Oddone, F., Maria Angrisani, A., Ziccardi, L., … Manni, G. (2008). Evidence of the neuroprotective role of citicoline in glaucoma patients. Progress in Brain Research, 173(8), 541–554. https://doi.org/10.1016/S0079-6123(08)01137-0
  • Bagdas, D., Sonat, F. A., Hamurtekin, E., Sonal, S., & Gurun, M. S. (2011). The antihyperalgesic effect of cytidine-5’-diphosphate-choline in neuropathic and inflammatory pain models. Behavioural Pharmacology, 22(5–6), 589–598. https://doi.org/10.1097/FBP.0b013e32834a1efb
  • Hamurtekin, E., & Sibel Gurun, M. (2006). The antinociceptive effects of centrally administered CDP-choline on acute pain models in rats: The involvement of cholinergic system. Brain Research, 1117(1), 92–100. https://doi.org/10.1016/j.brainres.2006.07.118
  • Killgore, W. D. S., Ross, A. J., Kamiya, T., Kawada, Y., Renshaw, P. F., & Yurgelun-Todd, D. A. (2010). Citicoline affects appetite and cortico-limbic responses to images of high-calorie foods. International Journal of Eating Disorders, 43(1), 6–13. https://doi.org/10.1002/eat.20658
  • Renshaw, P. F., Daniels, S., Lundahl, L. H., Rogers, V., & Lukas, S. E. (1999). Short-term treatment with citicoline (CDP-choline) attenuates some measures of craving in cocaine-dependent subjects: A preliminary report. Psychopharmacology, 142(2), 132–138. https://doi.org/10.1007/s002130050871

See also

External links

References

  1. Zeisel, S. H., & Da Costa, K. A. (2009). Choline: An essential nutrient for public health. Nutrition Reviews, 67(11), 615–623. https://doi.org/10.1111/j.1753-4887.2009.00246.x
  2. Chalovich, J. M., & Eisenberg, E. (2005). NIH Public Access. Biophysical Chemistry, 257(5), 2432–2437. https://doi.org/10.1016/j.immuni.2010.12.017.Two-stage
  3. 3.0 3.1 Renshaw, P. F., Daniels, S., Lundahl, L. H., Rogers, V., & Lukas, S. E. (1999). Short-term treatment with citicoline (CDP-choline) attenuates some measures of craving in cocaine-dependent subjects: a preliminary report. Psychopharmacology, 142(2), 132–138. https://doi.org/10.1007/s002130050871
  4. Glier, M. B., Green, T. J., & Devlin, A. M. (2014). Methyl nutrients, DNA methylation, and cardiovascular disease. Molecular Nutrition and Food Research, 58(1), 172–182. https://doi.org/10.1002/mnfr.201200636
  5. Killgore, W. D. S., Ross, A. J., Kamiya, T., Kawada, Y., Renshaw, P. F., & Yurgelun-Todd, D. A. (2010). Citicoline affects appetite and cortico-limbic responses to images of high-calorie foods. International Journal of Eating Disorders, 43(1), 6–13. https://doi.org/10.1002/eat.20658
  6. Hamurtekin, E., & Sibel Gurun, M. (2006). The antinociceptive effects of centrally administered CDP-choline on acute pain models in rats: The involvement of cholinergic system. Brain Research, 1117(1), 92–100. https://doi.org/10.1016/j.brainres.2006.07.118
  7. Bagdas, D., Sonat, F. A., Hamurtekin, E., Sonal, S., & Gurun, M. S. (2011). The antihyperalgesic effect of cytidine-5’-diphosphate-choline in neuropathic and inflammatory pain models. Behavioural Pharmacology, 22(5–6), 589–598. https://doi.org/10.1097/FBP.0b013e32834a1efb
  8. Rehman, H. (1999). Fish odor syndrome. Postgraduate Medical Journal, 75(886), 451–452. https://doi.org/10.1136/pmj.76.895.318a
  9. Parisi, V., Coppola, G., Centofanti, M., Oddone, F., Maria Angrisani, A., Ziccardi, L., … Manni, G. (2008). Evidence of the neuroprotective role of citicoline in glaucoma patients. Progress in Brain Research, 173(8), 541–554. https://doi.org/10.1016/S0079-6123(08)01137-0
  10. Mcglade, E., Locatelli, A., Hardy, J., Kamiya, T., Morita, M., Morishita, K., … Yurgelun-Todd, D. (2012). Improved Attentional Performance Following Citicoline Administration in Healthy Adult Women. Food and Nutrition Sciences, 336103(June), 769–773. https://doi.org/10.4236/fns.2012.36103